Step-by-step explanation:
hope it's help.
see answer attached
Answer:
1.49
Step-by-step explanation:
In order to find the slope of the tangent line to a given equation, and in a given point, we need to:
1. Find the first derivative of the given function.
2. Evaluate the first derivative function in the given point.
1. Let's find the first derivative of the given function:
The original function is 
But remeber that the derivative of
is 
so, 
2. Let's evaluate the first derivative function in the given point
The given point is (0.4,1.49) so:



Notice that the calculated slope of the tangent line is equal to the y-coordinate of the given point because f'(x)=f(x). In conclusion, the slope of the tangent line is equal to 1.49.
let's recall that a cube is just a rectangular prism with all equal sides, check picture below.
![\bf \textit{volume of a cube}\\\\ V=s^3~~ \begin{cases} s=&length~of\\ &a~side\\ \cline{1-2} V=&27000 \end{cases}\implies 27000=s^3\implies \sqrt[3]{27000}=s\implies 30=s \\\\[-0.35em] ~\dotfill\\\\ \textit{surface area of a cube}\\\\ SA=6s~~\begin{cases} s=&length~of\\ &a~side\\ \cline{1-2} s=&30 \end{cases}\implies SA=6(30)\implies SA=180](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cube%7D%5C%5C%5C%5C%20V%3Ds%5E3~~%20%5Cbegin%7Bcases%7D%20s%3D%26length~of%5C%5C%20%26a~side%5C%5C%20%5Ccline%7B1-2%7D%20V%3D%2627000%20%5Cend%7Bcases%7D%5Cimplies%2027000%3Ds%5E3%5Cimplies%20%5Csqrt%5B3%5D%7B27000%7D%3Ds%5Cimplies%2030%3Ds%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ctextit%7Bsurface%20area%20of%20a%20cube%7D%5C%5C%5C%5C%20SA%3D6s~~%5Cbegin%7Bcases%7D%20s%3D%26length~of%5C%5C%20%26a~side%5C%5C%20%5Ccline%7B1-2%7D%20s%3D%2630%20%5Cend%7Bcases%7D%5Cimplies%20SA%3D6%2830%29%5Cimplies%20SA%3D180)
for the first term:
n= 1 there is 1 item
n=2 there are 2+1 = 3 items
n = 3 there are 3+2+1 = 3+2 = 6 items
n = 4 there are 4+3+2+1 = 4+6 = 10 items
We are adding the "n" term each time
n = 5 10+5 = 15
n= 6 15+6 = 21
n = 7 21+7 = 28
n = 8 28+8 = 36
There would be 36 items in the 8th step