Answer:

Step-by-step explanation:
According to the divergence theorem;
The flux through the surface S is given by the formula:

where the vector field is:
F = 
Then the divergence of the vector field is:
![div (F) = \bigtriangledown.F = \Bigg [ \dfrac{\partial (y)}{\partial x} + \dfrac{\partial (z-y)}{\partial (y)}+ \dfrac{\partial (x)}{\partial (z)} \Bigg ]](https://tex.z-dn.net/?f=div%20%28F%29%20%3D%20%5Cbigtriangledown.F%20%3D%20%5CBigg%20%5B%20%5Cdfrac%7B%5Cpartial%20%28y%29%7D%7B%5Cpartial%20x%7D%20%2B%20%5Cdfrac%7B%5Cpartial%20%28z-y%29%7D%7B%5Cpartial%20%28y%29%7D%2B%20%5Cdfrac%7B%5Cpartial%20%28x%29%7D%7B%5Cpartial%20%28z%29%7D%20%20%5CBigg%20%5D)
= 0 - 1 + 0
= -1
Thus, the flux through the surface of the tetrahedron is:

To determine the volume of the tetrahedron with vertices O(0,0,0), A(8,0,0), B (0,8,0) & C(0,0,6)
The equation of the plane P moving through the vertices A, B and C is:

x + y + z = 8
Range:
For z: 0 ≤ z ≤ 8 - x - y
For y: 0 ≤ y ≤ 8 - x
For x; 0 ≤ x ≤ 8
Thus;

![\int ^8_0 \int ^{8-x}_{0} [z] ^{8-x-y}_{0} \ dydx = \int ^8_0 \int ^{8-x}_{0} \ (8 -x-y) \ dy dx](https://tex.z-dn.net/?f=%5Cint%20%5E8_0%20%5Cint%20%5E%7B8-x%7D_%7B0%7D%20%5Bz%5D%20%5E%7B8-x-y%7D_%7B0%7D%20%5C%20dydx%20%3D%20%5Cint%20%5E8_0%20%5Cint%20%5E%7B8-x%7D_%7B0%7D%20%5C%20%288%20-x-y%29%20%5C%20dy%20dx)
![\int ^8_0 [ (8-x)^2 - \dfrac{(8-x)^2}{2} ] dx = \dfrac{1}{2} \int ^8_0 (8-x)^2 \ dx](https://tex.z-dn.net/?f=%5Cint%20%5E8_0%20%5B%20%288-x%29%5E2%20-%20%5Cdfrac%7B%288-x%29%5E2%7D%7B2%7D%20%5D%20dx%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Cint%20%5E8_0%20%20%288-x%29%5E2%20%5C%20dx)
i.e.
![= \dfrac{1}{2} [ \dfrac{(8-x)^3}{(-1)^3}]^8_0](https://tex.z-dn.net/?f=%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5B%20%5Cdfrac%7B%288-x%29%5E3%7D%7B%28-1%29%5E3%7D%5D%5E8_0)
![= \dfrac{-1}{6}[(8-8)^3-(0-8)^3]](https://tex.z-dn.net/?f=%3D%20%5Cdfrac%7B-1%7D%7B6%7D%5B%288-8%29%5E3-%280-8%29%5E3%5D)
