1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babymother [125]
3 years ago
14

Kallie drank 12.75 gallons of water in 3 weeks. She drank the same amount of water each day. Estimate how many gallons she drank

in one day.
Mathematics
2 answers:
scZoUnD [109]3 years ago
6 0

Answer:

607 miltliters per day

Step-by-step explanation:

Step one:

given data

Kallie drank 12.75 gallons of water in 3 weeks

if she drank the same amount each day, then in one day she will drink

Note----there are 31 days in 3 weeks (7 days make 1 week)

Step two:

Hence in one day she will drink

= total volume of water/number of days

= 12.75/21

=0.607liters per day

or

607 militliters per day

antiseptic1488 [7]3 years ago
5 0

Answer:

3 1/8

Step-by-step explanation:

You might be interested in
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
Calculate the Area: 6ft 3ft 8ft<br><br><br><br>I need this asap​
SSSSS [86.1K]

Answer:

Answer is 72

Step-by-step explanation:

6 times 8 is 48. 3 needs to be divided by 2 to made into 1.5. Then multiply 48 and 1.5 to make 72ft your answer

6 0
2 years ago
Read 2 more answers
F(x)=5^x+1 what’s the rate of change between x=0 and x=4
nalin [4]

Answer:

156

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Average Rate of Change:  \displaystyle \displaystyle \frac{f(b) - f(a)}{b - a}

Step-by-step explanation:

<u>Step 1; Define</u>

<em>Identify</em>

f(x) = 5ˣ + 1

Interval <em>x</em> [0, 4] →<em>b</em> = 4, <em>a</em> = 0

<u>Step 2: Find Rate of Change</u>

  1. Substitute in variables [Average Rate of Change]:                                        \displaystyle \displaystyle \frac{f(4) - f(0)}{4 - 0}
  2. [Average Rate of Change] Substitute in <em>x</em> [Function f(x)]:                              \displaystyle \displaystyle \frac{(5^4 + 1) - (5^0 + 1)}{4 - 0}
  3. (Parenthesis) Evaluate exponents:                                                                  \displaystyle \displaystyle \frac{(625 + 1) - (1 + 1)}{4 - 0}
  4. (Parenthesis) Add:                                                                                              \displaystyle \displaystyle \frac{626 - 2}{4 - 0}
  5. [Fraction] Subtract:                                                                                           \displaystyle \displaystyle \frac{624}{4}
  6. Divide:                                                                                                               \displaystyle \displaystyle 156
6 0
3 years ago
If seven consecutive numbers equal to 182, which one is the smallest?
____ [38]

Answer:

the seven consecutive numbers would be 23 24 25 26 27 28 29

Step-by-step explanation:


4 0
3 years ago
Read 2 more answers
Three years ago, Sherman was twice as old as Clive. If Clive’s present age is c, which expression represents Sherman’s present a
Dennis_Churaev [7]
The answer is D

Sherman would still be double Clive's age (2c) and he would have aged 3 years (+3)
5 0
3 years ago
Other questions:
  • so you visit a state where there is a sales tax of 11% .when your grocery bill comes to 89.53 what will you pay in total?
    13·1 answer
  • What 2.3 repeating as a simplified fraction
    8·1 answer
  • Shannon is shopping for peanut butter at the grocery store. Which option is the lowest price? Table showing prices and incentive
    8·1 answer
  • 100 gallons of water at $1.19 per gallon
    7·2 answers
  • Mrs. Kremer uses a 15% off coupon when she buys a camera. The original price of the camera is $225.How much money did she pay fo
    13·1 answer
  • My old account is h acked lol &lt;3
    10·1 answer
  • Pls help extra points and mark brainlist
    6·1 answer
  • Help plz 30 points and brainliest! &lt;3
    8·2 answers
  • 3 divides the difference between h and 4 represents 5
    12·2 answers
  • Help pleaseeeeeee!!!!!!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!