1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
algol [13]
3 years ago
15

What the answer here?

Mathematics
1 answer:
Brut [27]3 years ago
3 0

Answer:

x230x

Step-by-step explanation:

yan po ang tama na decimal pa breinlest at pa vote plsssssss thxxxxxxxx

You might be interested in
Let and be differentiable vector fields and let a and b be arbitrary real constants. Verify the following identities.
elena-14-01-66 [18.8K]

The given identities are verified by using operations of the del operator such as divergence and curl of the given vectors.

<h3>What are the divergence and curl of a vector field?</h3>

The del operator is used for finding the divergence and the curl of a vector field.

The del operator is given by

\nabla=\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}

Consider a vector field F=x\^i+y\^j+z\^k

Then the divergence of the vector F is,

div F = \nabla.F = (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(x\^i+y\^j+z\^k)

and the curl of the vector F is,

curl F = \nabla\times F = \^i(\frac{\partial Fz}{\partial y}- \frac{\partial Fy}{\partial z})+\^j(\frac{\partial Fx}{\partial z}-\frac{\partial Fz}{\partial x})+\^k(\frac{\partial Fy}{\partial x}-\frac{\partial Fx}{\partial y})

<h3>Calculation:</h3>

The given vector fields are:

F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k

1) Verifying the identity: \nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

Consider L.H.S

⇒ \nabla.(aF1+bF2)

⇒ \nabla.(a(M\^i + N\^j + P\^k) + b(Q\^i + R\^j + S\^k))

⇒ \nabla.((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the dot product between these two vectors,

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(1)

Consider R.H.S

⇒ a\nabla.F1+b\nabla.F2

So,

\nabla.F1=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(M\^i + N\^j + P\^k)

⇒ \nabla.F1=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}

\nabla.F2=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(Q\^i + R\^j + S\^k)

⇒ \nabla.F1=\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z}

Then,

a\nabla.F1+b\nabla.F2=a(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z})+b(\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z})

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(2)

From (1) and (2),

\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

2) Verifying the identity: \nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Consider L.H.S

⇒ \nabla\times(aF1+bF2)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times(a(M\^i+N\^j+P\^k)+b(Q\^i+R\^j+S\^k))

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times ((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the cross product,

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y}) ...(3)

Consider R.H.S,

⇒ a\nabla\times F1+b\nabla\times F2

So,

a\nabla\times F1=a(\nabla\times (M\^i+N\^j+P\^k))

⇒ \^i(\frac{\partial aP\^k}{\partial y}- \frac{\partial aN\^j}{\partial z})+\^j(\frac{\partial aM\^i}{\partial z}-\frac{\partial aP\^k}{\partial x})+\^k(\frac{\partial aN\^j}{\partial x}-\frac{\partial aM\^i}{\partial y})

a\nabla\times F2=b(\nabla\times (Q\^i+R\^j+S\^k))

⇒ \^i(\frac{\partial bS\^k}{\partial y}- \frac{\partial bR\^j}{\partial z})+\^j(\frac{\partial bQ\^i}{\partial z}-\frac{\partial bS\^k}{\partial x})+\^k(\frac{\partial bR\^j}{\partial x}-\frac{\partial bQ\^i}{\partial y})

Then,

a\nabla\times F1+b\nabla\times F2 =

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y})

...(4)

Thus, from (3) and (4),

\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Learn more about divergence and curl of a vector field here:

brainly.com/question/4608972

#SPJ4

Disclaimer: The given question on the portal is incomplete.

Question: Let F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k be differential vector fields and let a and b arbitrary real constants. Verify the following identities.

1)\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2\\2)\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

8 0
1 year ago
What are the factors of the expression (y-2)(x+3)
ivanzaharov [21]
(y-x) (2+3)= (yx)(5)
But am not sure it could be =(2-3) (y+x) = (1) (yx)
5 0
3 years ago
Read 2 more answers
The solution of -2x + 13 &lt;9 is
Karo-lina-s [1.5K]
Inequality form: x > 2
Interval notation: (2, ∞ )
8 0
3 years ago
A Pew Internet poll asked cell phone owners about how they used their cell phones. One question asked whether or not during the
EastWind [94]

Answer:

a) \hat p=\frac{471}{1024}=0.460

The standard error is given by:

SE= \sqrt{\frac{\hat p(1-\hat p)}{n}}=\sqrt{\frac{0.460(1-0.460)}{1024}}=0.0156

And the margin of error is given by:

ME=z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}=1.96\sqrt{\frac{0.460(1-0.460)}{1024}}=0.0305

b) The 99% confidence interval would be given by (0.429;0.491)

Step-by-step explanation:

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

The population proportion have the following distribution

p \sim N(p,\sqrt{\frac{p(1-p)}{n}})

Data given and notation  

n=1024 represent the random sample taken    

X=471 represent the people responded that they had used their cell phone while in a store within the last 30 days to call a friend or family member for advice about a purchase they were considering

\hat p=\frac{471}{1024}=0.460 estimated proportion of people responded that they had used their cell phone while in a store within the last 30 days to call a friend or family member for advice about a purchase they were considering    

p= population proportion of people responded that they had used their cell phone while in a store within the last 30 days to call a friend or family member for advice about a purchase they were considering

Part a

The confidence interval would be given by this formula

\hat p \pm z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}

For the 95% confidence interval the value of \alpha=1-0.95=0.05 and \alpha/2=0.025, with that value we can find the quantile required for the interval in the normal standard distribution.

z_{\alpha/2}=1.96

The standard error is given by:

SE= \sqrt{\frac{\hat p(1-\hat p)}{n}}=\sqrt{\frac{0.460(1-0.460)}{1024}}=0.0156

And the margin of error is given by:

ME=z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}=1.96\sqrt{\frac{0.460(1-0.460)}{1024}}=0.0305

Part b

If we replace the values obtained we got:

0.460-1.96\sqrt{\frac{0.460(1-0.460)}{1024}}=0.429

0.460+1.96\sqrt{\frac{0.460(1-0.460)}{1024}}=0.491

The 99% confidence interval would be given by (0.429;0.491)

8 0
3 years ago
Solve the equation 5x-2x^2+1
Pani-rosa [81]

Answer:

Step-by-step explanation:

If you call "5x-2x^2+1" an "equation," then you must equate 5x-2x^2+1 to 0:

5x-2x^2+1 = 0

This is a quadratic equation.  Rearranging the terms in descending order by powers of x, we get:

-2x^2 + 5x + 1 = 0.  Here the coefficients are a = -2, b = 5 and c = 1.

Use the quadratic formula to solve for x:

First find the discriminant, b^2 - 4ac:  25 - 4(-2)(1) = 25 + 8 = 33

Because the discriminant is positive, the roots of this quadratic are real and unequal.

                                                             -b ± √(discriminant)

Applying the quadratic formula   x = --------------------------------

                                                                         2a

we get:

      -5 ± √33           -5 + √33

x = ----------------- = --------------------- and

           2(-2)                     -4

                                  -5 - √33

                                 ---------------

                                         -4

5 0
3 years ago
Other questions:
  • Sebastian rides his bike 2,000 meters in 5 minutes. How many meters does he bike in 1 minute?
    9·2 answers
  • What is the equation for 5 more than 3 times a number is 0
    5·1 answer
  • The question is find the surface area if this rectangular prism ​
    12·1 answer
  • I need help writing this proof!!
    8·1 answer
  • The rectangle graphed has a length of 5 and a width of 4 how does the perimeter change when the width is decreased by half
    15·1 answer
  • PLEASE help me
    6·1 answer
  • Helpp!!!! I need the correct answer
    11·1 answer
  • Let angle 1, angle 2, and angle 3 have the following relationships.
    13·1 answer
  • Yes or no?????!!!!!!!
    10·2 answers
  • I NEED HELP! ASAP, THIS IS SO HARD AND MY BRAIN HURTS, IF U HELP ME WITH OTHER QUESTIONS LIKE THIS ILL GIVE U 50+ POINTS
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!