The ball takes approximately a time of 2.041 seconds to reach its maximum height.
<h3>What time does the ball take to reach maximum height?</h3>
The height of the ball as a function of time is modelled by a <em>quadratic</em> equation, the required information can be found by transforming the expression into <em>vertex</em> form:
h = - 4.9 · t² + 20 · t + 12
h = - 4.9 · (t² - 4.082 · t - 2.449)
h + (- 4.9) · (6.615) = - 4.9 · (t² - 4.082 · t + 4.166)
h - 32.414 = - 4.9 · (t - 2.041)²
The ball takes approximately a time of 2.041 seconds to reach its maximum height.
To learn more on quadratic equations: brainly.com/question/1863222
#SPJ1
Polygon Diagonals. The number of diagonals in a polygon = n(n-3)/2, where n is the number of polygon sides. For a convex n-sided polygon, there are n vertices, and from each vertex you can draw n-3 diagonals, so the total number of diagonals that can be drawn is n(n-3).
profit=f(x)
so solve for f(x)=1000
1000=70n-400
add 400 to both sides
1400=70n
divide both sides by 70
20=n
20 students need to be enrolled to make a profit of 1000.00
<span>reducible.
hope this helps</span>