Explanation:
The perimeter of the track is the two circumferences of the semicircles (when combined, they form one circle, so we can just find the circumference of the circle) added to the lengths of the rectangle (
160
meters).
To find the circumference of the circle, we need to know the diameter.
Circumference of a circle:
d
π
or
2
r
π
, where
d
represents diameter and
r
represents radius
The diameter of the circle happens to be the same as the width of the rectangle. We know that the area of a rectangle is found by multiplying its length by its width. We know that the area is
14400
and that its length is
160
.
Width: area divided by length
14400
160
=
90
The diameter of the circle and the width of the rectangle is
90
meters.
Circumference:
90
⋅
π
=
90
π
→
If you are using an approximation such as 3.14 for
π
, multiply that by 90
Add
160
⋅
2
to the circumference since the lengths of the rectangle are also part of the perimeter.
160
⋅
2
=
320
90
π
+
320
i hope it helps you ok please mark ❣️ me as brainlist
It’s c) XS, i love your pfp btw!! :)
Answer:
Step-by-step explanation:
The rate of travel here is in mph - "miles per hour".
That just means how many miles you can travel in one hour. In this problem, you're given 15 hours, and the distance they travel within those 15 hours.
Therefore, you should divide both the number of miles and the number of hours by 15 to find out how far they can travel in 1 hour.
735 ÷ 15 = 49 miles
15 ÷ 15 = 1 hour
Their average rate of travel was 49 miles in 1 hour, which is 49 mph.
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
<u>Algebra II</u>
- Distance Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
Point (11, 4) → x₁ = 11, y₁ = 4
Point (5, 8) → x₂ = 5, y₂ = 8
<u>Step 2: Find distance </u><em><u>d</u></em>
Simply plug in the 2 coordinates into the distance formula to find distance <em>d</em>
- Substitute in points [Distance Formula]:

- [√Radical] (Parenthesis) Subtract:

- [√Radical] Evaluate exponents:

- [√Radical] Add:

- [√Radical] Simplify:
