Given f (x) = 2x, g(x) = x + 4, and h(x) = 5 – x3, find (f + g)(2), (h – g)(2), (f × h)(2),
The average rate of change of f(x) on the interval [a,b] is f(b)−f(a)b−a.
We have that a=1254, b=6103100, f(x)=20(54)x.
Thus, f(b)−f(a)b−a=20(54)(6103100)−(20(54)(1254))6103100−(1254)=−58207660913467407226562517167001203595951472642–√5–√4+542101086242752217003726400434970855712890625197922048572373973475376871275743307366424750⋅53100.
Answer: the average rate of change is −58207660913467407226562517167001203595951472642–√5–√4+542101086242752217003726400434970855712890625197922048572373973475376871275743307366424750⋅53100≈550754.870532511
pls put as brainliest
<h2>Answer:</h2><h2>good to know</h2><h2 /><h2>thx :)</h2>
Answer:
line
Step-by-step explanation:
quizlet
cliffnotes