Answer:
B. 2x – 1 = 13 and x = 7
Step-by-step explanation:
We are given 4 equations and a solution for each. We have to tell which of the given solution satisfies the given equation.
Option A.
2x -1 = 13 and x = 6
Using this value in the equation, we get:
2(6) -1 = 13
12 - 1 = 13
11 = 13, which is not true. Hence this option is not valid
Option B.
2x - 1 = 13 and x = 7
Using the value in the equation, we get:
2(7) - 1 =13
14 - 1 =13
13 = 13, which is true. Hence this option is valid.
Option C.
2x + 1 =13 and x = 7
Using the value in the equation, we get:
2(7) + 1 = 13
15 = 13, which is not true. So this option is not valid
Option D.
2x - 1 = 13 and x = 11
Using this value in the equation, we get:
2(11) - 1 = 13
21 = 13, which is not true. Hence this option is not valid.
Answer:
x = 11
Step-by-step explanation:
The relationship between the sine and cosine functions can be written as ...
sin(x) = cos(90 -x)
sin(A) = cos(90 -A) = cos(B) . . . . substituting the given values
Equating arguments of the cosine function, we have ...
90 -(3x+4) = 8x -35
86 -3x = 8x -35
86 +35 = 8x +3x . . . . . add 3x+35 to both sides
121 = 11x . . . . . . . . . . . . collect terms
121/11 = x = 11 . . . . . . . . divide by 11
_____
<em>Comment on the solution</em>
There are other applicable relationships between sine and cosine as well. The result is that there are many solutions to this equation. One set is ...
11 +(32 8/11)k . . . for any integer k
Another set is ...
61.8 +72k . . . . . for any integer k
Well it’s simply the answer