1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NNADVOKAT [17]
3 years ago
10

you can see that there is 8 cm in middle of the trapezoid. above the trapezoid, it says 6 cm, below the trapezoid, it says 11 cm

. find the area of the trapezoid and answer this question in square cm.​

Mathematics
1 answer:
cestrela7 [59]3 years ago
8 0

Answer:

Step-by-step explanation:

The area of a trapezoid is the average of the parallel bases times the height or distance between the two bases

A=h(b1+b2)/2

Here we have h=8cm, b1=6cm, and b2=11cm so

A=8(6+11)/2

A=8(17)/2

A=4(17)

A=68 cm^2

You might be interested in
MATH<br> MATh<br> MAtH<br> MAAAAThHhH<br> YAAA
MariettaO [177]

Answer:

6k + 19

Step-by-step explanation:

7k - k + 19

6k + 19

7 0
2 years ago
Read 2 more answers
Pleaseeee answer correctly !!!!!!!!!!!!!!!!! Will mark Brianliest !!!!!!!!!!!!!!!!!!!
aev [14]

Answer:

132 degrees

Step-by-step explanation:

its the same as the other side since its a rhombus :)

did i help?

7 0
3 years ago
Divide 2/8 by 9/18 . Input your answer as a reduced fraction.\
Katen [24]

\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{\frac{2}{8}\div\frac{9}{18}   }} \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\sf Simplify \ \frac{2}{8} \ to \ \frac{1}{4}. \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{\frac{1}{4}\div\frac{18}{9}   }} \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\sf Use \ this \ rule: a\div \frac{b}{c}=a\times \frac{c}{b}a \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{\frac{1}{4}\times\frac{18}{9}   }} \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\sf Use \ this \ rule: \frac{a}{b} \times \frac{c}d{}=\frac{ac}{bd}. \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{\frac{1\times18}{4\times9} \ \to \ \ Multiply  }} \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{ \frac{18}{36}= }}\boxed{\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{\frac{1}{2}  }} \end{gathered}$}} \end{gathered}$}

8 0
2 years ago
Read 2 more answers
Find the interquartile range of the data.
likoan [24]

The answer is 14. Here is how I work it out.


First we are going have to identify quartile 1 and quartile 3.


So after putting the numbers in order from least to greatest mark the number with a half way point.

This is optional but it will help us spot the sections better.


31,33,35,41,43,|46,48,49,49,50

Next put parentheses around the remaining groups of numbers.

(31,33,35,41,43,)|(46,48,49,49,50)


For the next step we have to find the median of each group.


(31,33,35,41,43,)|(46,48,49,49,50)


The median of each group, are called the quartiles, the median of the lower half is quartile 1, and the median of the upper half is quartile 3.


Now subtract quartile 1 from quartile 3.


49 – 35 = 14


So the interquartile range of this data set is 14.

4 0
3 years ago
What's the surface area ratio &amp; the volume ratio??<br><br> please help me ASAP!!
Ulleksa [173]

Answer:

Step-by-step explanation:

Volumes of two spheres A and B = 648 cm³ and 1029 cm³

Things to remember:

1). Scale factor of two objects = \frac{r_1}{r_2} [r_1 and r_2 are the radii of two circles]

2). Area scale factor = \frac{(r_1)^2}{(r_2)^2}

3). Volume scale factor = \frac{(r_1)^3}{(r_2)^3}

Volume scale factor Or Volume ratio = \frac{V_A}{V_B}

                         \frac{(r_1)^3}{(r_2)^3}= \frac{648}{1029}

                         \frac{r_1}{r_2}=\sqrt[3]{\frac{648}{1029} }

                         \frac{r_1}{r_2}=\frac{6(\sqrt[3]{3})}{7(\sqrt[3]{3})}

                        \frac{r_1}{r_2}=\frac{6}{7}

Therefore, scale factor = \frac{r_1}{r_2}=\frac{6}{7}

                                      ≈ 6 : 7

Area scale factor Or area ratio = (\frac{r_1}{r_2})^2=(\frac{6}{7})^2

                                                   = \frac{36}{49}

                                                   ≈ 36 : 49

Volume scale factor or Volume ratio = \frac{648}{1029}

                                                             = \frac{216}{343}

                                                             ≈ 216 : 343

4 0
3 years ago
Other questions:
  • 2. Quadrilateral ABCD is inscribed in a circle. Find the measure of each of the angles of the quadrilateral. Show your work
    12·1 answer
  • What makes 83 cents ?
    15·2 answers
  • PLEASE ANSWER QUICKLY ​
    7·1 answer
  • Can someone help me on questions 6 and 7 plz
    8·1 answer
  • What's 51 correct and 9 incorrect as a fraction
    7·1 answer
  • How do you graph 4x + 2y = 3
    6·2 answers
  • A decreased by 50 and then increased by 50
    7·2 answers
  • Combine like terms to create an equivalent expression87​ m+ 109​ −2m− 53​
    8·1 answer
  • A record store has 3,108 records evenly shared among 6 rows. How many records are in each row?
    11·2 answers
  • Twenty six thousandths in numerical form
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!