The answer should be z = 10
Answer:
C. 128/3 meters cubed
Step-by-step explanation:
The volume of a cylinder is denoted by:
, where r is the radius and h is the height. We know it's equal to 64, so we can set that equal to V:


We know that the sphere and cylinder have the same height and radius. However, the "height" of a sphere is actually the same as its diameter, which is twice its radius. Then, we can replace h in the above equation with 2r:



Now, the volume of a sphere is denoted by:
, where r is the radius. From above, we know that
, so we can plug this into the equation:


Thus, the answer is C.
(a) Take the Laplace transform of both sides:


where the transform of
comes from
![L[ty'(t)]=-(L[y'(t)])'=-(sY(s)-y(0))'=-Y(s)-sY'(s)](https://tex.z-dn.net/?f=L%5Bty%27%28t%29%5D%3D-%28L%5By%27%28t%29%5D%29%27%3D-%28sY%28s%29-y%280%29%29%27%3D-Y%28s%29-sY%27%28s%29)
This yields the linear ODE,

Divides both sides by
:

Find the integrating factor:

Multiply both sides of the ODE by
:

The left side condenses into the derivative of a product:

Integrate both sides and solve for
:


(b) Taking the inverse transform of both sides gives
![y(t)=\dfrac{7t^2}2+C\,L^{-1}\left[\dfrac{e^{s^2}}{s^3}\right]](https://tex.z-dn.net/?f=y%28t%29%3D%5Cdfrac%7B7t%5E2%7D2%2BC%5C%2CL%5E%7B-1%7D%5Cleft%5B%5Cdfrac%7Be%5E%7Bs%5E2%7D%7D%7Bs%5E3%7D%5Cright%5D)
I don't know whether the remaining inverse transform can be resolved, but using the principle of superposition, we know that
is one solution to the original ODE.

Substitute these into the ODE to see everything checks out:

In this situation, attendee number thirty will be the first one o receive both the bobblehead and the ticket.
<h3>Which attendees will receive the bobblehead and the ticket?</h3>
Bobblehead:
- Attendee number 10
- Attendee number 20
- Attendee number 30
Ticket:
- Attendee number 15
- Attendee number 30
<h3>What can be concluded?</h3>
It can be concluded the attendee number 30 will be the first one to receive both the ticket and the bobblehead.
Learn more about ticket in: brainly.com/question/14001767
#SPJ1