Answer:
We validate that the formula to determine the translation of the point to its image will be:
A (x, y) → A' (x+4, y-1)
Step-by-step explanation:
Given
A (−1, 4)→ A' (3, 3)
Here:
- A(-1, 4) is the original point
- A'(3, 3) is the image of A
We need to determine which translation operation brings the coordinates of the image A'(3, 3).
If we closely observe the coordinates of the image A' (3, 3), it is clear the image coordinates can be determined by adding 4 units to the x-coordinate and subtracting 1 unit to the y-coordinate.
Thue, the rule of the translation will be:
A(x, y) → A' (x+4, y-1)
Let us check whether this translation rule validates the image coordinates.
A (x, y) → A' (x+4, y-1)
Given that A(-1, 4), so
A (-1, 4) → A' (-1+4, 4-1) = A' (3, 3)
Therefore, we validate that the formula to determine the translation of the point to its image will be:
A (x, y) → A' (x+4, y-1)
Multiply the diameter by PI which is 3.14 so that means the circumference would be 15.7.
Answer:
0 ≤ x ≤ 70
Step-by-step explanation:
The range is defined by all values in the y-axe that are represented in the graph. In this case, we see the graph goes from 0 to 70, that will be the range.
PD. The representation is a non function.
Answer:
x = 42
Step-by-step explanation:
The marked angles are supplementary, so their sum is 180°.
(2x +8) +(2x +4) = 180
4x +12 = 180 . . . . . . . . . simplify
x +3 = 45 . . . . . . . divide by 4 (because we can)
x = 42 . . . . . . subtract 3
_____
<em>Additional comment</em>
A "two-step" linear equation like this one is usually solved by subtracting the unwanted constant, then dividing by the coefficient of the variable. Here, we have done those steps in reverse order. This makes the numbers smaller and eliminates the coefficient of the variable. Sometimes I find it easier to solve the equation this way.
The sum of the interior angles is 360