Answer:

Explanation:
Hello there!
In this case, given the Henderson-Hasselbach equation, it is possible for us to compute the pH by firstly computing the concentration of the acid and the conjugate base; for this purpose we assume that the volume of the total solution is 0.025 L and the molar mass of the sodium base is 234 - 1 + 23 = 256 g/mol as one H is replaced by the Na:

And the concentrations are:
![[acid]=0.000855mol/0.025L=0.0342M](https://tex.z-dn.net/?f=%5Bacid%5D%3D0.000855mol%2F0.025L%3D0.0342M)
![[base]=0.000781mol/0.025L=0.0312M](https://tex.z-dn.net/?f=%5Bbase%5D%3D0.000781mol%2F0.025L%3D0.0312M)
Then, considering that the Ka of this acid is 2.5x10⁻⁵, we obtain for the pH:

Best regards!
We assume that we have Ka= 4.2x10^-13 (missing in the question)
and when we have this equation:
H2PO4 (-) → H+ + HPO4-
and form the Ka equation we can get [H+]:
Ka= [H+] [HPO4-] / [H2PO4] and we have Ka= 4.2x10^-13 & [H2PO4-] = 0.55m
by substitution:
4.2x10^-13 = (z)(z)/ 0.55
z^2 = 2.31x 10^-13
z= 4.81x10^-7
∴[H+] = 4.81x10^-7
when PH equation is:
PH= -㏒[H+]
= -㏒(4.81x10^-7) = 6.32
Answer:
hope it helps.
<h3>stay safe healthy and happy.<u>.</u><u>.</u></h3>
Answer: 1. Alcohol 2. Ester
Explanation:
Right on edge.
I think it’s “number” and “type”