Answer:
33.3 kg of air
Explanation:
This is a problem of conversion unit.
Density is mass / volume
Therefore we have to calculate the volume in the room, to be multiply by density. That answer will be the mass of air.
Volume of the room → 9 ft . 11 ft . 10 ft = 990 ft³
Density is in g/L, therefore we have to convert the ft³ to dm³ (1 dm³ = 1L)
990 ft³ . 28.3 dm³ / 1ft³ = 28017 dm³ → 28017 L
This is the volume of the room, if we replace it in the density formula we can know the mass of air in g.
1.19 g/L = Mass of air / 28017 L
Mass of air = 28017 L . 1.19 g/L → 33340 g of air
Finally, let's convert the mass in g to kg → 33340 g . 1kg / 1000 g = 33.3 kg
Answer:
ffgghhhhhgffffffcvvvvvvvvvvvvvvvvvv
Explanation:
cccvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Answer:
A
Explanation:
Hmm, so we have the following in the diagram
Pt(s)
Cl2(g)
Ag(s)
NaCl(aq)
AgNO3(aq)
Pt 2+, 4+, 6+ Though it states Pt is inert
Cl 2-
Ag 1+
Na 1+
NO3-
Anode definition: the positively charged electrode by which the electrons leave an electrical device.
Electrode definition: a conductor through which electricity enters or leaves an object, substance, or region.
Cations attracted to cathode pick up electrons
Anions attracted to anode release electrodes+
Reduction at Cathode (red cat gain of e)
Oxidation at Anode (ox anode loss of e)
So from the diagram we can see that the charge is being generated through the 2 metal plates.
So the answer is A, the anode material is Pt and the half reaction is 2Cl- = Cl2 + 2e-
Answer:
D & E
Explanation:
I think this is dealing with latent heat and D & E would be the range where you will find solid and liquid phases in equilibrium, cuz it starts as gas at from A to B, B to C is gas and liquid equilibrium, C to D is liquid, D to E solid and liquid, and then E to F is solid.