F(x)=(2/3)x^1.5
The centroid position along the x-axis can be obtained by
integrating the function * x to get the moment about the y-axis,
then divide by the area of the graph,
all between x=0 to x=3.5m.
Expressed mathematically,
x_bar=(∫f(x)*x dx )/(∫ f(x) dx limits are between x=0 and x=3.5m
=15.278 m^3 / 6.1113 m^2
=2.500 m
Answer:
M-N= {a,d}
Step-by-step explanation:
subtract the common elements
Vertex form:
y-k=a(x-h)^2
h=-2,k=-20,y=-12 when x=0
thus;
-12+20=a(0+2)^2
8=4a
a=2
Equation:
y+20=2(x+2)^2
y+20=2(x^2+4x+4)
f(x)=2(x^2+4x+4)-20
f(x)=2x^2+8x+8-20
f(x)=2x^2+8x-20
(3x+1)(4x-1)
3x+4x=7x
1-1=0
So
(3x+1)(4x-1) = 7x
I hope this helped and was right, have a nice day