Answer:
The height of the bridge is 78.4 m.
Explanation:
Given;
time of the stone motion off the bridge, t = 4.0 s
acceleration due to gravity, g = 9.8 m/s²
The height of the bridge is given by;
h = ut + ¹/₂gt²
where;
u is the initial velocity of the stone, u = 0
h = ¹/₂gt²
h = ¹/₂(9.8)(4)²
h = 78.4 m
Therefore, the height of the bridge is 78.4 m.
Answer:
The ball will be attracted to the negatively charged plate. It'll touch and pick up some electrons from the plate so that the ball becomes negatively charged. Immediately the ball is repelled by the negative plate and is attracted to the positive plate. The ball gives up electrons to the positive plate so that it is positively charged and suddenly attracts to the negative plate again, flies over to it and picks up enough electrons to be repulsed by negative plate and again to the positive plate and that continues.
The SI unit for acceleration is m/s2 ( D)
Movement can be without change in positions. As only a part of it can be made to move. If you move there is a motion and if there is a motion there is a movement so they're same thing. In motion whole of body moves, but in movements only the parts of body moves.
Answer:
2/3
Explanation:
In the case shown above, the result 2/3 is directly related to the fact that the speed of the rocket is proportional to the ratio between the mass of the fluid and the mass of the rocket.
In the case shown in the question above, the momentum will happen due to the influence of the fluid that is in the rocket, which is proportional to the mass and speed of the same rocket. If we consider the constant speed, this will result in an increase in the momentum of the fluid. Based on this and considering that rocket and fluid has momentum in opposite directions we can make the following calculation:
Rocket speed = rocket momentum / rocket mass.
As we saw in the question above, the mass of the rocket is three times greater than that of the rocket in the video. For this reason, we can conclude that the calculation should be done with the rocket in its initial state and another calculation with its final state:
Initial state: Speed = rocket momentum / rocket mass.
Final state: Speed = 2 rocket momentum / 3 rocket mass. -------------> 2/3