The electron is accelerated through a potential difference of

, so the kinetic energy gained by the electron is equal to its variation of electrical potential energy:

where
m is the electron mass
v is the final speed of the electron
e is the electron charge

is the potential difference
Re-arranging this equation, we can find the speed of the electron before entering the magnetic field:

Now the electron enters the magnetic field. The Lorentz force provides the centripetal force that keeps the electron in circular orbit:

where B is the intensity of the magnetic field and r is the orbital radius. Since the radius is r=25 cm=0.25 m, we can re-arrange this equation to find B:
Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San
B. F<em>spring = k(triangle)</em> x
Hello,
The answer should be option D "specific heat".
Reason:
Specific heat is what tells the person how my heat and or pressure is required to raised the objects temperature. Its not option A convection because I'm convection is mainly used as like the ozone layer and the suns rays. Its not option B radiation because radiation doesn't tell the person what temperature it needs in order for it to rise its more like its already rises and hot. Its also not option C because conduction is the process of a object heating another object therefore the answer is option D.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit