1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
deff fn [24]
2 years ago
7

The perimeter of the triangle is 202cm. Using that find the value of x

Mathematics
2 answers:
IgorLugansk [536]2 years ago
8 0

Answer:

x = 13

Step-by-step explanation:

3x + 12 + 5x + 16 + 4x + 18 = 202

combine like terms

12x + 12 + 16 + 18 = 202

12x + 46 = 202

<u>        -46     -46 </u>

12x = 156

divide by 12

x = 13

<em><u>Hope this helped! Have a nice rest of ur day! Plz mark as brainliest!!!</u></em>

<em><u>-Lil G</u></em>

laila [671]2 years ago
3 0

Add all the sides together (don´t forget parenthesis) Put the x´s with the x´s and the same with the other numbers. The subtract additional numbers from the total. The divide what left from the number in front of the x.

(3x + 12) + (5x + 16) + (4x + 18) = 202

8x + 28 + (4x + 18) = 202

12x + 46 = 202

      - 46     -46

12x = 156

/12      /12

x = 13

You might be interested in
Sin theta = 24/25, cos theta &gt; 0, Find cos(2theta)
Norma-Jean [14]
Well... you don't necessarily need to get the cosine value, in order to get the double angle

\bf \textit{Double Angle Identities}&#10;\\ \quad \\&#10;sin(2\theta)=2sin(\theta)cos(\theta)&#10;\\ \quad \\\\&#10;cos(2\theta)=&#10;\begin{cases}&#10;cos^2(\theta)-sin^2(\theta)\\&#10;\boxed{1-2sin^2(\theta)}\\&#10;2cos^2(\theta)-1&#10;\end{cases}&#10;\\ \quad \\\\&#10;tan(2\theta)=\cfrac{2tan(\theta)}{1-tan^2(\theta)}\\\\&#10;-------------------------------\\\\&#10;cos(2\theta )=1-2sin^2(\theta )\qquad \qquad  sin(\theta )=\cfrac{24}{25}&#10;\\\\\\&#10;cos(2\theta )=1-2\left( \cfrac{24}{25} \right)^2\implies cos(2\theta )=-0.8432
4 0
3 years ago
Read 2 more answers
Juan paid 59.99 tor a jacket that originially sold for 85.50. about what percent of the originial price did he pay for the jacke
77julia77 [94]

Juan paid 70.16 % of the original price of the jacket.

Step-by-step explanation:

Step 1:

Given details, Original Selling Price of the jacket = 85.50

New Selling Price of the jacket = 59.99

Step 2:

To determine what percentage of the old price is the new price, we have to use percentage calculation.

x/100\times 85.50 = 59.99

Step 3:

Substitute in the formula, the given values

x = (59.99/85.50) \times 100

  = (0.7016) \times 100

  = 70.16

Therefore, percentage paid is 70.16%

8 0
3 years ago
Integrate cosx/sqrt(1+cosx)dx
Step2247 [10]
<span>Take the integral: integral (cos(x))/sqrt(cos(x)+1) dx
For the integrand (cos(x))/sqrt(1+cos(x)), substitute u = 1+cos(x) and du = -sin(x) dx: = integral (u-1)/(sqrt(2-u) u) du
For the integrand (-1+u)/(sqrt(2-u) u), substitute s = sqrt(2-u) and ds = -1/(2 sqrt(2-u)) du: = integral -(2 (1-s^2))/(2-s^2) ds
Factor out constants: = -2 integral (1-s^2)/(2-s^2) ds
For the integrand (1-s^2)/(2-s^2), cancel common terms in the numerator and denominator: = -2 integral (s^2-1)/(s^2-2) ds
For the integrand (-1+s^2)/(-2+s^2), do long division: = -2 integral (1/(s^2-2)+1) ds
Integrate the sum term by term: = -2 integral 1/(s^2-2) ds-2 integral 1 ds
Factor -2 from the denominator: = -2 integral -1/(2 (1-s^2/2)) ds-2 integral 1 ds
Factor out constants: = integral 1/(1-s^2/2) ds-2 integral 1 ds
For the integrand 1/(1-s^2/2), substitute p = s/sqrt(2) and dp = 1/sqrt(2) ds: = sqrt(2) integral 1/(1-p^2) dp-2 integral 1 ds
The integral of 1/(1-p^2) is tanh^(-1)(p): = sqrt(2) tanh^(-1)(p)-2 integral 1 ds
The integral of 1 is s: = sqrt(2) tanh^(-1)(p)-2 s+constant
Substitute back for p = s/sqrt(2): = sqrt(2) tanh^(-1)(s/sqrt(2))-2 s+constant
Substitute back for s = sqrt(2-u): = sqrt(2) tanh^(-1)(sqrt(1-u/2))-2 sqrt(2-u)+constant
Substitute back for u = 1+cos(x): = sqrt(2) tanh^(-1)(sqrt(sin^2(x/2)))-2 sqrt(1-cos(x))+constant
Factor the answer a different way: = sqrt(1-cos(x)) (csc(x/2) tanh^(-1)(sin(x/2))-2)+constant
Which is equivalent for restricted x values to:
Answer: | | = (2 cos(x/2) (2 sin(x/2)+log(cos(x/4)-sin(x/4))-log(sin(x/4)+cos(x/4))))/sqrt(cos(x)+1)+constant</span>
3 0
3 years ago
Which equation can be used to find n the distance between 3/8
GuDViN [60]

Answer:

3/8 - N = 61/64.

4 0
3 years ago
The otherSites Squared10.A cylinder has a diameter of 12 meters and a height of 9 meters. What is thetotal surface area of the c
Gelneren [198K]

The total surface area of a cylinder is given by the formula

\begin{gathered} A_{cylinder}=2circular\text{ area+curved surface area} \\ =2\pi r^2+2\pi rh \end{gathered}

Given diameter, d=12meters, we will solve for radius

\begin{gathered} \text{diameter,d}=2\times radius,r \\ d=2r \\ r=\frac{d}{2} \\ r=\frac{12m}{2} \\ r=6m \end{gathered}

The height is given as 9meters

Substituting for r and h in the formula will give

\begin{gathered} A_{cylinder}=2\pi r^2+2\pi rh \\ r=6m;h=9m;\pi=3.14 \\ A_{cylinder}=2\times3.14\times6^2+2\times3.14\times6\times9_{} \end{gathered}\begin{gathered} A_{cylinder}=6.28\times36+6.28\times54 \\ =226.08+339.12 \\ =565.2m^2 \end{gathered}

Hence the surface area of the cylinder is 565.2m²

8 0
10 months ago
Other questions:
  • The terms of the binomial expansion are written below using the patterns. (m + 2)4 = (1)(m4)(20) + (4)(m3)(21) + (6)(m2)(22) + (
    7·1 answer
  • Leslie is making a fruit salad she uses 3 cups of grapes a cup of cantaloupe 4 cups of pineapple 6 cups of strawberries and 18 c
    12·1 answer
  • The Answer!!!!!!!!!!!!!!!!
    9·1 answer
  • Factor the expression completely.<br><br> 25c-5
    13·1 answer
  • Simplify the complex fraction 7/10÷-2/5
    10·1 answer
  • Can anyone tell me how 1164÷8 = 145.5? I don't get it ​
    5·2 answers
  • Can you help me plz
    15·1 answer
  • Number 4 is 10x24.9<br><br><br> Help me plz and PLZ NO LINKS
    8·1 answer
  • Evaluate the expression when a=-7 and y=4. -y+2a
    11·2 answers
  • Answer:?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!