Given :
The diagonals of rhombus ABCD intersect at E.
∠CAD = 20°.
To Find :
The angle ∠CDA.
Solution :
We know, diagonals of a rhombus bisects each other perpendicularly.
So, ∠DEA = 90°.
In triangle ΔEAD :
∠EAD + ∠AED + ∠EDA = 180°
20° + 90° + ∠EDA = 180°
∠EDA = 70°
Now, we know diagonal of rhombus also bisect the angle between two sides .
So, ∠CDA = 2∠EDA
∠CDA = 2×70°
∠CDA =140°
Therefore, ∠CDA is 140°.
Answer:
4 i think or -5 +1.........
Answer:
35
Step-by-step explanation:
The time taken for 21000 spectators to vacate the stadium , if only 15 exits are functional is 28 minutes .
In the question ,
it is given that
the time taken to vacate the stadium = 20 minutes
number of exits = 25 exits
capacity of the stadium = 25000 spectators .
given that ,
time taken to exit the stadium varies directly with number of spectators and inversely with the number of exits .
time taken ∝ number of spectators ∝ 1/number of exits .
to remove the proportionality sign , we write the constant
time taken = k * (number of spectators)/(number of exits) .
20 = k * 25000/25
20 = k * 1000
k = 20/1000
k = 2/100
k = 1/50 = 0.02
So, to find the time taken for 21,000 spectators to vacate the stadium, if only 15 exits are functional , we use the formula
time taken = (0.02)*(21000/15)
= 0.02*1400
= 28
Therefore , The time taken for 21000 spectators to vacate the stadium , if only 15 exits are functional is 28 minutes .
Learn more about Equation here
brainly.com/question/23633125
#SPJ1