The maximum speed of a boat at 30 feet length of water is 0.093 nautical miles/hour or knots.
<u>Step-by-step explanation:</u>
- The equation for the maximum speed, s is given by s²= (16/9)x
- where, x is the length of the water line in feet.
It is given that, the modeled equation s²= (16/9)x is used to find the maximum speed in knots or nautical miles per hour.
The question is asked to find the maximum speed when the length of the water is 30 feet.
Therefore, to find the maximum speed in 30 feet water, the given modeled equation is used. So, substitute the 30 feet in place of x.
<u>Now, calculating the maximum speed :</u>
s² = (16/9)(30)
s² = 480 / 9
s² = 53.3
Taking square root on both sides,
s = √53.3
s = 7.3
The maximum speed of a boat at 30 feet length of water is 7.3 nautical miles/hour or knots.
Answer:
6(6x^2-4x-3)
Step-by-step explanation:
pull out the gcf which is 6 and it is complete because it is impossible to factor 6x^2-4x-3
Answer:
3.6 fl oz
Step-by-step explanation:
figure out the percentage of the gallon that was used in the original ratio, in this case 1 that was used in 1.5. thats 150%
so no multiply 2.4 by 1.5 to get 3.6
to check work divide both ratios and see if its the same number (i checked)
Answer:
5.47 x 10^3
Step-by-step explanation: