Check the picture below.
now, we're making an assumption that, the two blue shaded region are equal in shape, and thus if that's so, that area above the 14 is 6 and below it is also 6, 14 + 6 + 6 = 26.
so hmm if we simply get the area of the trapezoid and subtract the area of the yellow triangle and the area of the cyan triangle, what's leftover is what we didn't subtract, namely the shaded region.
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h~~=height\\ a,b=\stackrel{parallel~sides}{bases~\hfill }\\[-0.5em] \hrulefill\\ h=15\\ a=14\\ b=26 \end{cases}\implies A=\cfrac{15(14+26)}{2}\implies A=300 \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\Large Areas}}{\stackrel{trapezoid}{300}~~ - ~~\stackrel{yellow~triangle}{\cfrac{1}{2}(26)(9)}~~ - ~~\stackrel{cyan~triangle}{\cfrac{1}{2}(15)(6)}} \\\\\\ 300~~ - ~~117~~ - ~~45\implies 138\qquad \textit{blue shaded area}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h~~%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7Bparallel~sides%7D%7Bbases~%5Chfill%20%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D15%5C%5C%20a%3D14%5C%5C%20b%3D26%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B15%2814%2B26%29%7D%7B2%7D%5Cimplies%20A%3D300%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btrapezoid%7D%7B300%7D~~%20-%20~~%5Cstackrel%7Byellow~triangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%2826%29%289%29%7D~~%20-%20~~%5Cstackrel%7Bcyan~triangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%2815%29%286%29%7D%7D%20%5C%5C%5C%5C%5C%5C%20300~~%20-%20~~117~~%20-%20~~45%5Cimplies%20138%5Cqquad%20%5Ctextit%7Bblue%20shaded%20area%7D)
Answer:
27
Step-by-step explanation:
if 5n is equal to 135 the divide both sides with 5 and you will see 1n is equal to 27
Answer:
It is 18
Step-by-step explanation:
A^2+31^2=36^2
After that you simplify then solve and you'll get 18
Answer:
236 cm²
Step-by-step explanation:
Height of an equilateral triangle (h) = √3 /2 (l)
l = side of the equilateral triangle.
h = √3 /2 (15)
In an equilateral triangle the orthocenter, centroid, circumcenter and incenter are in the same spot
The center of the circle is the centroid and height match with the median. The radius of the circumcircle is equal to two thirds the height.
Formula for the Radius of the circumcircle = 2/3 h
= 2/3 x √3 /2 (15)
= 5 √3 cm (=radius)
Area of the circle = πr^
= 3.14 x( 5 √3 ) ^
=3.14 x(25*3)
=3.14 x 75
=235.5
=236 cm²
Answer:
Since it has smaller absolute and relative errors, 355/113 is a better aproximation for
than 22/7
Step-by-step explanation:
The formula for the absolute error is:
Absolute error = |Actual Value - Measured Value|
The formula for the relative error is:
Relative error = |Absolute error/Actual value|
I am going to consider the actual value of
as 3.14159265359.
In the case of 22/7:
22/7 = 3.14285714286.
Absolute error = |3.14159265359 - 3.14285714286| = 0.00126448927
Relative error = 0.00126448927/3.14159265359 = 0.00040249943 = 0.04%
In the case of 355/113
355/113 = 3.14159292035
Absolute error = |3.14159265359 - 3.14159292035| = 0.00000026676
Relative error = 0.00000026676/3.14159265359 = 0.000000085 = 0.0000085%
Since it has smaller absolute and relative errors, 355/113 is a better aproximation for
than 22/7