Answer:
x = 12
y = 4
Step-by-step explanation:
x + y = 16
x - y = 8
y + 8 = x
Replace x with y + 8 in the new equation
8 + 2y = 16 ----> we can minus 8 on both sides
2y = 8 -----> divide both sides by 2
y = 4
Now for the x value
x + 4 = 16 ----> minus 4 on both sides
x = 12
Dannng I thought I seen this one before
Use a calculator to find the cube root of positive or negative numbers. Given a number x<span>, the cube root of </span>x<span> is a number </span>a<span> such that </span><span>a3 = x</span><span>. If </span>x<span> positive </span>a<span> will be positive, if </span>x<span> is negative </span>a<span> will be negative. Cube roots is a specialized form of our common </span>radicals calculator<span>.
</span>Example Cube Roots:<span>The 3rd root of 64, or 64 radical 3, or the cube root of 64 is written as \( \sqrt[3]{64} = 4 \).The 3rd root of -64, or -64 radical 3, or the cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).The cube root of 8 is written as \( \sqrt[3]{8} = 2 \).The cube root of 10 is written as \( \sqrt[3]{10} = 2.154435 \).</span>
The cube root of x is the same as x raised to the 1/3 power. Written as \( \sqrt[3]{x} = x^{\frac{1}{3}} \). The common definition of the cube root of a negative number is that <span>
(-x)1/3</span> = <span>-(x1/3)</span>.[1] For example:
<span>The cube root of -27 is written as \( \sqrt[3]{-27} = -3 \).The cube root of -8 is written as \( \sqrt[3]{-8} = -2 \).The cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).</span><span>
</span>This was not copied from a website or someone else. This was from my last year report.
<span>
f -64, or -64 radical 3, or the cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).The cube root of 8 is written as \( \sqrt[3]{8} = 2 \).The cube root of 10 is written as \( \sqrt[3]{10} = 2.154435 \).</span>
The cube root of x is the same as x raised to the 1/3 power. Written as \( \sqrt[3]{x} = x^{\frac{1}{3}} \). The common definition of the cube root of a negative number is that <span>
(-x)1/3</span> = <span>-(x1/3)</span>.[1] For example:
<span>The cube root of -27 is written as \( \sqrt[3]{-27} = -3 \).The cube root of -8 is written as \( \sqrt[3]{-8} = -2 \).The cube root of -64 is written as \( \sqrt[3]{-64} = -4 \).</span>
Answer:

Step-by-step explanation:
We know that the length is four times the width, so:

We also know the area, which is 324 m². The formula for area:

Insert the known values:

Solve for w. Simplify by removing parentheses:

Divide 4 from both sides to isolate the variable:

Find the square root of both sides:

The width is 9 m.
We know the width. Now find the length by using the area formula and inserting known values:

Solve for l. Divide both sides by 9:

The length of the rectangle is 36. (You can check: 4 times 9 is 36)
Now find the perimeter:

Insert values:

The perimeter is 90 m.