Answer:
Option A
The cost of keeping the semiconductor below the critical temperature is unreasonable
Explanation:
First of all, we need to understand what superconductors are. Superconductors are special materials that conduct electrical current with almost zero resistance. This means that there is little or no need for a voltage source to be connected to them. As a matter of fact, once a superconductor is connected to a power supply, one can remove the power supply and the current will still flow.
However, most superconducts can only conduct at very low temperatures up to -200 degrees Celcius. This is because, at that temperature, their atoms and molecules are relatively settled, hence they pose little or no resistance to the flow of current.
This as you can guess is extremely difficult to do, as you will need a lot of effort to cool it to that temperature and maintain it.
This makes option a the answer:
The cost of keeping the semiconductor below the critical temperature is unreasonable.
Answer:
In the picture
Explanation:
I hope that it's a clear solution and explanation, hope that helps.
Answer:
Hey
Your answer would be
The moon is not visible
due to Earth's shadow=lunar eclipse
The sun is not visible due
to the moon=solar eclipse
The moon is on the side of
Earth opposite the sun=new moon
The moon and sun are on
the same side of Earth=full mon
there is a relation between intensity of light beam and the magnitude of electric field.<span>I=(1/2)c<span>ϵo</span>n<span>E2</span>=P/π<span>r2</span></span>
<span><span>E2</span>=2P/c<span>ϵo</span>nπ<span>r2</span></span>
E= magnitude of electric field
n= refractive index of medium
<span><span>μo</span><span>ϵ0</span>=1/<span>c2
</span></span>energy= power*time
= P*(1m/speed of light)<span><span>energy=(P∗1m)/c</span></span>