Answer:
B. The statement is false. This is true only if θ is an acute angle in a right triangle.
Step-by-step explanation:
Trigonometric ratio formula can only be applied to define the relationship between the angles of a right triangle and its side lengths.
Therefore, it is impossible to define or find the tan θ of "any triangle". It only applies to right angled triangles.
In the case of a right triangle, given a reference angle, θ, tan θ = side lenght opposite to θ ÷ side lenght adjacent to θ (tan θ =
.
A right triangle has two acute angles and 1 right angle that which is 90°.
Therefore, we can conclude that:
"B. The statement is false. This is true only if θ is an acute angle in a right triangle."
Answer:
Is it not 2x + 12?
Step-by-step explanation:
Answer: the picture has no answer it's invalid but I will try:
X is a 90 degree angle other than that I can't do anything
Step-by-step explanation:
Answer:
Not similar
Step-by-step explanation:
In triangle MLN & WXY,
Right angles - > 1
There is nothing common in these 2 triangles other than (1)
Therefore,
Not similar
Answer:
The Possible dimension of the ring could be;
20 ft × 60 ft
25 ft × 48 ft
30 ft × 40 ft
60 ft × 20 ft
48 ft × 25 ft
40 ft × 30 ft
Step-by-step explanation:
Given:
Number of skaters = 30
Area for each skater = 40 sq ft
We need to find the dimension of rectangular ring the are going to build.
Now we know that they building the skating ring such that they all can use at same time.
Hence if the all use at same time then we will find the total area first.
Total area can be calculated by multiplying Number of skaters with area required for each skaters.
Framing the equation we get;
Total area = 
Hence The total area of the rectangular ring would be 1200 sq. ft.
Now we know that Total area is equal to product of length and width.

1200 can be written as = 20 × 60, 25 × 48, 30 × 40,60 × 20,48 × 25,40 × 30
Hence the Possible dimension of the ring could be;
20 ft × 60 ft
25 ft × 48 ft
30 ft × 40 ft
60 ft × 20 ft
48 ft × 25 ft
40 ft × 30 ft