Answer: I wanna say it's B
Step-by-step explanation: but I'm not completely sure.
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: ![\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcf%28x%29%5D%20%3D%20c%20%5Ccdot%20f%27%28x%29)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
U-Substitution
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution.</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:

- [Bounds] Switch:

<u>Step 3: Integrate Pt. 2</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] U-Substitution:

- [Integral] Exponential Integration:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Answer:
y=14+(2/3x)
Step-by-step explanation:
Your main goal is to get Y by itself on one side.
To start subtract 2x from both sides. This will give you -3y=42-2x.
Then you divide both sides by -3 to get Y by itself.
That will leave you with ...
y=14+(2/3x)
(remember the negatives cancel each other out)
Answer:
1170450 yd^2
Step-by-step explanation:
The first thing is to calculate the necessary perimeter, which would be like this:
2 * a + b = 3060
if we solve for b, we are left with:
b = 3060-2 * a
Now for the area it would be:
A = a * b = a * (3060-2 * a
)
A = 3060 * a -2 * a ^ 2
To maximize the area, we calculate the derivative with respect to "a":
dA / da = d [3060 * a -2 * a ^ 2
]/gives
dA / day = 3060 - 4 * a
If we equal 0:
0 = 3060 - 4 * a
4 * a = 3060
a = 3060/4
a = 765 and d
Therefore b:
b = 3060 - 2 * a = 3060 - 1530 = 1530
A = a * b
A = 765 * 1530
A = 1170450 and d ^ 2
Hi there! The answer is x = 1


Rule AB = 0, gives A = 0 or B = 0

Therefore, the smallest of both roots is x = 1.