The correct answer of the given question above would be option d and option b. The conversion factors that should be used to convert 4km/min are 60 minutes is to 1 hour and 1 kilometer is to 1000 meters. Therefore, in 4km/min, there are 4000m in every 0.0167 min. Hope this answer is able to help you.
Cuz it can help you later on in the fuchure
This is the easiest way to solve this problem:
Imagine this represents how many combinations you can have for each of the 4 wheels (each blank spot for one wheel): __ __ __ __
For the first situation it says how many combos can we make if no digits are repeated.
We have 10 digits to use for the first wheel so put a 10 in the first slot
10 __ __ __
Since no digit can be repeated we only have 9 options for the second slot
10 9_ __ __
Same for the third slot, so only 8 options
<u>10</u> <u> 9 </u> <u> 8 </u> __
4th can't be repeated so only 7 options left
<u>10</u> <u> 9 </u> <u> 8 </u> <u> 7
</u><u>
</u>Multiply the four numbers together: 10*9*8*7 = 5040 combinations
For the next two do the same process as the one above.
If digits can be repeated? You have ten options for every wheel so it would look like this: <u>10</u> <u>10</u> <u>10</u> <u>10
</u>
10*10*10*10 = 10,000 combinations
If successive digits bust be different?
We have 10 for the first wheel, but second wheel only has 9 options because 2nd number can't be same as first. The third and fourth wheels also has 9 options for the same reason.
<u>10</u> <u> 9</u><u> </u> <u> 9 </u> <u> 9 </u>
10*9*9*9 = 7290 combinations
Answer:
Presuming she eats the same amount of sweets each day, 9 days
Step-by-step explanation
9514 1404 393
Answer:
A. 96
Step-by-step explanation:
The surface area is the sum of the areas of the two triangular bases and the areas of the three rectangular lateral faces.
A = 2(1/2)bh + PH
where b is the base of the triangle, h is its height, P is the perimeter of the triangle, and H is the height of the prism.
A = (3 cm)(4 cm) +(3 +4 +5 cm)(7 cm) = 12 cm² +84 cm²
A = 96 cm²
The surface area of the triangular prism is 96 square cm.