Answer:
a)
AB is on the latitude 30°N.
<u>Find AB:</u>
- AB = 2*3.142*6400*cos 30°*(32+35)/360 = 6482.15 km
BC is along longitude 35°W
<u>Find BC:</u>
- BC = 2*3.142*6400*(30 + 20)/360 = 5585.77 km
<u>Total distance traveled:</u>
- 6482.15 + 5585.77 = 12067.92 km
<u>Convert the distance to nautical miles:</u>
12067.92/1.86 = 6488.13 nautical miles
b)
<u>Find the average speed:</u>
- 6488.13/22 = 294.92 nautical miles / hour
<u>Note</u>. <em>This is unrealistically high speed for a ship, this must be a plane or the time given wrong.</em>
Answer:
-4
Step-by-step explanation:
The line has a "rise" between the two points of -4 units for a "run" of +1 unit. The slope is the ratio ...
m = rise/run = -4/1 = -4.
The slope is -4.
_____
<em>Additional comment</em>
A "whole number" must be non-negative. Here, the slope is negative. If you're restricted to "a fraction or a whole number", then the appropriate answer is the fraction -4/1. We suspect that "integer" is meant where "whole number" is used.
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π and cos A = cos B · cos C
scratchwork:
A + B + C = π
A = π - (B + C)
cos A = cos [π - (B + C)] Apply cos
= - cos (B + C) Simplify
= -(cos B · cos C - sin B · sin C) Sum Identity
= sin B · sin C - cos B · cos C Simplify
cos B · cos C = sin B · sin C - cos B · cos C Substitution
2cos B · cos C = sin B · sin C Addition
Division
2 = tan B · tan C

<u>Proof LHS → RHS</u>
Given: A + B + C = π
Subtraction: A = π - (B + C)
Apply tan: tan A = tan(π - (B + C))
Simplify: = - tan (B + C)

Substitution: = -(tan B + tan C)/(1 - 2)
Simplify: = -(tan B + tan C)/-1
= tan B + tan C
LHS = RHS: tan B + tan C = tan B + tan C 