The dust particles in the water can be helped to settle down faster by Alum.
So, your answer is option B. Alum.
Hope this helps!
Correct answer Is Dinitrogen Trioxide
Let's investigate the substances involved in the reaction first. The compound <span>CH3NH3+Cl- is a salt from the weak base CH3NH2 and the strong acid HCl. When this salt is hydrated with water, it will dissociate into CH3NH2Cl and H3O+:
CH3NH3+Cl- + H2O </span>⇒ CH3NH2Cl + H3O+
Nest, let's apply the ICE(Initial-Change-Equilibrium) table where x is denoted as the number of moles used up in the reaction:
CH3NH3+Cl- + H2O ⇒ CH3NH2Cl + H3O+
Initial 0.51 0 0
Change -x +x +x
-------------------------------------------------------------------------------
Equilibrium 0.51 - x x x
Then, let's find the equilibrium constant of the reaction. Since the reaction is hydrolysis we use KH, which is the ratio of Kw to Ka or Kb. Kw is the equilibrium constant for water hydrolysis which is equal to 1×10⁻¹⁴. Since the salt comes from the weak base, we use Kb. Since pKb = 3.44, then. 3.44 = -log(Kb). Thus, Kb = 3.6307×10⁻⁴
KH = Kw/Kb = (x)(x)/(0.51 - x)
1×10⁻¹⁴/ 3.6307×10⁻⁴ = x²/(0.51-x)
x = 3.748×10⁻⁶
Since x from the ICE table is equal to the equilibrium concentration of H+, we can find the pH of the aqueous solution:
pH = -log(H+) = -log(x)
pH = -log ( 3.748×10⁻⁶)
pH = 5.43
Answer:
Net ionic equation:
Ba²⁺(aq) + SO₄²⁻(aq) → BaSO₄(s)
Explanation:
Chemical equation:
BaCl₂ + Na₂SO₄ → BaSO₄ + NaCl
Balanced Chemical equation:
BaCl₂(aq) + Na₂SO₄(aq) → BaSO₄(s) + 2NaCl(aq)
Ionic equation:
Ba²⁺(aq) + 2Cl⁻(aq) + 2Na⁺(aq) + SO₄²⁻(aq) → BaSO₄(s)+ 2Na⁺(aq) + 2Cl⁻ (aq)
Net ionic equation:
Ba²⁺(aq) + SO₄²⁻(aq) → BaSO₄(s)
The Cl⁻(aq) and Na⁺ (aq) are spectator ions that's why these are not written in net ionic equation. The BaSO₄ can not be splitted into ions because it is present in solid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation.