Answer:
The right answer is "8.81 atm".
Explanation:
Given:
V = 5.00 L
Mass = 4900 g
MW = 32 g/mol
T = 350 K
Now,
Number of moles will be:



By using the ideal gas equation, we get
⇒ 
or,
⇒ 
By substituting the values, we get


Answer: The density of the unknown metal is 7.86 g/ml.
Explanation:
Density is defined as the mass contained per unit volume.
Given : Mass of metal = 25.32 g
Volume of metal = volume of water displaced = (28.22 - 25.00) ml = 3.22 ml
Putting in the values we get:
Thus the density of the unknown metal is 7.86 g/ml
When HCl is added to metal ions, metal chlorides are produced. In this problem, it is asked whether the given ions precipitate or not when added to HCl. According to the rule, all chlorides except Ag+, Pb 2+, Hg2 2+ are soluble. Hence the ion that would precipitate is only lead (II) ion.
Answer:
The entropy and the systems surrounding it tend to increase.
Answer:
A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.
Explanation: