Given: In the given figure, there are two equilateral triangles having side 50 yards each and two sectors of radius (r) = 50 yards each with the sector angle θ = 120°
To Find: The length of the park's boundary to the nearest yard.
Calculation: 
The length of the park's boundary (P) = 2× side of equilateral triangle + 2 × length of the arc
or,                    (P) = 2× 50 yards + 2× (2πr) ( θ ÷360°)
or,                    (P) = 2× 50 yards + 2× (2×3.14× 50 yards) ( 120° ÷360°)
or,                    (P) = 100 yards + 2× (2×3.14× 50 yards) ( 120° ÷360°)
or,                    (P) = 100 yards + 209.33 yards
or,                    (P) = 309.33 yards ≈309 yards
Hence, the option D:309 yards is the correct option.
 
        
                    
             
        
        
        
Answer:

Step-by-step explanation:
Given
Shape: Cylinder



Required
Simplify the volume
The volume is calculated as:

Substitute values for Base Area and Height

Expand the bracket

Open brackets



 
        
             
        
        
        
Answer:
B. 200 doses
Step-by-step explanation:
Given,
1 dose is required for 100 mg,
Since, 1 mg = 0.001 g,
⇒ 100 mg = 0.1 g
⇒ 1 dost is required for 0.1 g,
Thus, the ratio of doses and quantity ( in gram ) is 
Let x be the doses required for 20 grams,
So, the ratio of doses and quantity is 


Hence, 200 doses can be obtained from 20 grams of the drug.
Option 'B' is correct.
 
        
             
        
        
        
Answer:
It's 8
Step-by-step explanation:
![16 ^{ \frac{3}{4} }  =  \sqrt[4]{16 ^{3} }  =  \sqrt[4]{2 ^{4 \times 3} } = 2^{ \frac{12}{4} }   = 2^{3}  = 8](https://tex.z-dn.net/?f=%2016%20%5E%7B%20%5Cfrac%7B3%7D%7B4%7D%20%7D%20%20%3D%20%20%5Csqrt%5B4%5D%7B16%20%5E%7B3%7D%20%7D%20%20%3D%20%20%5Csqrt%5B4%5D%7B2%20%5E%7B4%20%5Ctimes%203%7D%20%7D%20%3D%202%5E%7B%20%5Cfrac%7B12%7D%7B4%7D%20%7D%20%20%20%3D%202%5E%7B3%7D%20%20%3D%208)