Answer:
The table a not represent a proportional relationship between the two quantities
The table b represent a proportional relationship between the two quantities
Step-by-step explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form
or 
<u><em>Verify each table</em></u>
<em>Table a</em>
Let
A ----> the independent variable or input value
B ----> the dependent variable or output value
the value of k will be

For A=35, B=92 ---> 
For A=23, B=80 ---> 
the values of k are different
therefore
There is no proportional relationship between the two quantities
<em>Table b</em>
Let
C ----> the independent variable or input value
D ----> the dependent variable or output value
the value of k will be

For C=20, D=8 ---> 
For C=12.5, D=5 ---> 
the values of k are equal
therefore
There is a proportional relationship between the two quantities
The linear equation is equal to

Answer:


Step-by-step explanation:
El cos(α) se define como el cociente entre el cateto adyacente y la hipotenusa.
El valor del cateto adyacente en nuestgro caso es CA = 3.
La hipotenusa se calcual de la siguiente manera:

Por lo tanto, el cos(α) sera:

El cosec(α)=h/CO.
El cateto opuesto CO = 4 y la hipotenusa h = 5
Por lo tanto, el cosec(α) sera:

Espero te haya sido de ayuda!
Answer:
the answer is 5 because thats the varible
Step-by-step explanation:
Answer:

Step-by-step explanation:
Given

Required
Convert to fraction
To do this, we simply multiply the fraction by 100%
This gives:



The expression cannot be further simplified.
Take for instance the fraction is: 
Using the same analysis, the percentage would be:



