Check the picture below.
since chords NQ and MP cross the center of the circle at R, that means that those two chords are diametrical chords and the angles made by both are vertical angles and thus twin angles, namely both are 18° as you see in the picture, so the angle NMP in magenta is really 162° + 18° + 18° = 198°, and we know the radius NR is 8.
![\textit{arc's length}\\\\ s=\cfrac{r\pi \theta }{180}~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ r=8\\ \theta =198 \end{cases}\implies s=\cfrac{(8)\pi (198)}{180}\implies s\approx 27.6](https://tex.z-dn.net/?f=%5Ctextit%7Barc%27s%20length%7D%5C%5C%5C%5C%20s%3D%5Ccfrac%7Br%5Cpi%20%5Ctheta%20%7D%7B180%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20%5Ctheta%20%3D%5Cstackrel%7Bdegrees%7D%7Bangle%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D8%5C%5C%20%5Ctheta%20%3D198%20%5Cend%7Bcases%7D%5Cimplies%20s%3D%5Ccfrac%7B%288%29%5Cpi%20%28198%29%7D%7B180%7D%5Cimplies%20s%5Capprox%2027.6)
Answer:
80°
Step-by-step explanation:
Since they are vertical angles, they are congruent to each other.
∠r ≅ 80°
Answer:
d = 
Step-by-step explanation:
Given that W varies jointly as L and d² then the equation relating them is
W = kLd² ← k is the constant of variation
To find k use the condition W = 140 when d = 4 and L = 54, thus
140 = k × 54 × 4² = 864k ( divide both sides by 864 )
= k , that is
k = 
W =
Ld² ← equation of variation
Multiply both sides by 216
216W = 35Ld² ( divide both sides by 35L )
= d² ( take the square root of both sides )
d = 
Answer:
Graph it on a graphing calculator
Step-by-step explanation:
Here the line passes through (0,0) and (1,3).
First we need to find the slope , and for that we need to use the following formula

On substituting the values from the point, we will get

Now we will use slope intercept form, which is

Where m is the slope and b is the y intercept
And on substituting the values of x and y from the point (1,3) and slope, m = 3, we will get


b =0
Substituting the values of m and b in the slope intercept form, we will get
