Answer:
The error she made was that she was adding x and 2.75. She should subtract 2.75 from x.
Another mistake that she made was that she sold each for $7 assuming that she would make a profit of 78, but she should see each necklace for $12.5 so that she could make a profit of $78.
Step-by-step explanation:
The error she made was that she was adding x and 2.75.
She should write the equation as 8 (x - 2.75) = 78; as she spends $2.75 to make a necklace.
By using the correct equation: 8 (x - 2.75) = 78
=> 8x - 22 = 78
=> 8x = 78 + 22
=> 8x = 100
=> x = 100/8
=> x = 12.5
Another mistake that she made was that she sold each for $7 assuming that she would make a profit of 78, but she should see each necklace for $12.5 so that she could make a profit of $78.
Hope this helps you.
Answer:
4 gallons
Step-by-step explanation:
The total required quarts of paint is: 8 x 1/2 = 4
Answer:
The value is 
Step-by-step explanation:
From the question we are told that
The population proportion is 
The sample size is n = 563
Generally the population mean of the sampling distribution is mathematically represented as

Generally the standard deviation of the sampling distribution is mathematically evaluated as

=>
=>
Generally the probability that the proportion of persons with a college degree will differ from the population proportion by less than 5% is mathematically represented as

Here
is the sample proportion of persons with a college degree.
So
![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P(\frac{[[0.05 -0.52]]- 0.52}{0.02106} < \frac{[\^p - p] - p}{\sigma } < \frac{[[0.05 -0.52]] + 0.52}{0.02106} )](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%28%5Cfrac%7B%5B%5B0.05%20-0.52%5D%5D-%200.52%7D%7B0.02106%7D%20%3C%20%5Cfrac%7B%5B%5C%5Ep%20-%20p%5D%20-%20p%7D%7B%5Csigma%20%7D%20%20%3C%20%5Cfrac%7B%5B%5B0.05%20-0.52%5D%5D%20%2B%200.52%7D%7B0.02106%7D%20%29)
Here
![\frac{[\^p - p] - p}{\sigma } = Z (The\ standardized \ value \ of\ (\^ p - p))](https://tex.z-dn.net/?f=%5Cfrac%7B%5B%5C%5Ep%20-%20p%5D%20-%20p%7D%7B%5Csigma%20%7D%20%20%3D%20Z%20%28The%5C%20standardized%20%5C%20%20value%20%5C%20%20of%5C%20%20%28%5C%5E%20p%20-%20p%29%29)
=> ![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[\frac{-0.47 - 0.52}{0.02106 } < Z < \frac{-0.47 + 0.52}{0.02106 }]](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%5B%5Cfrac%7B-0.47%20-%200.52%7D%7B0.02106%20%7D%20%20%3C%20%20Z%20%20%3C%20%5Cfrac%7B-0.47%20%2B%200.52%7D%7B0.02106%20%7D%5D)
=> ![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[ -2.37 < Z < 2.37 ]](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%5B%20-2.37%20%3C%20%20Z%20%20%3C%202.37%20%5D)
=> 
From the z-table the probability of (Z < 2.37 ) and (Z < -2.37 ) is

and

So
=>
=>
=> 