1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vazorg [7]
3 years ago
8

Evaluate the multi-store model (5 marks) THIS IS A PSYCHOLOGY QUESTION

Physics
2 answers:
bixtya [17]3 years ago
8 0

Answer:

OK well

Explanation:

where's the question bring it first

g100num [7]3 years ago
4 0

Answer:

ExplanationjakkJXJAKGKXAHLKHQHL:

You might be interested in
One of the 64.3-cm-long strings of an ordinary guitar is tuned to produce the note LaTeX: B_3B 3 (frequency 245 Hz) when vibrati
Phoenix [80]

Answer:

v = 315 m/s

Explanation:

given,

length of the string = 64.3 cm

frequency at fundamental mode = 245 Hz

speed of sound = 345 m/s

speed of the transverse waves = ?

here

wavelength = twice length of string

λ = 2 L

λ = 2 × 64.3

λ = 128.6 cm = 1.286 m

using formula

v = ν λ

v = 245 × 1.286

v = 315.07 m/s

Hence, the speed of the transverse wave on the string will be equal to v = 315 m/s

8 0
4 years ago
A boulder on the mythical planet mongo drops off a cliff and falls from rest 1000 m in 10.0 s. (A) what's the initial speed of t
Amiraneli [1.4K]
At rest, initial speed zero

x=v(initial) t+ 1/2 at^2
-1000m=0(10) + 1/2 a 10^2
-1000m=50a
a = -20 m/s^2
6 0
3 years ago
A parallel-plate vacuum capacitor is connected to a battery and charged until the stored electric energy is . The battery is rem
Viktor [21]

Answer:

A

The energy dissipated in the resistor {U_k} = \frac{U}{k}

B

The energy dissipated in the resistor{U_k} = kU

Explanation:

In order to gain a good understanding of the solution above it is necessary to understand that the concept required to solve the question is energy stored in the parallel plate capacitor.

Initially, take the first case. In that, according to the formula for energy stored in parallel plate capacitor with the dielectric inserted between the two plates, find the energy stored. Then, find the energy stored in the parallel plate capacitor when no dielectric is present. Then, write the equation of energy stored in the capacitor with the dielectric present in the form of the energy stored in the capacitor without the dielectric present. The equation must not be in the form of voltage as battery is removed in this case.

For part B, use the equation of the energy dissipated in the resistor. Write it in the form of the equation for energy stored in the parallel plate capacitor without dielectric in it. The equation must be in the form of voltage as battery is kept connected. Looking at the fundamentals

The energy stored in the parallel plate capacitor with the dielectric is given by,

                 U _k = \frac{1}{2} \frac{q ^2}{kC}

Here, the energy stored in the capacitor will be equal to the energy dissipated in the resistor. In this equation, Uk is the energy dissipated in the resistor, q is charge, k is the dielectric constant, and C is the capacitance.

Now, the equation of the energy stored in the parallel plate capacitor without dielectric is,

​ U= \frac{1}{2} \frac{q ^2}{C}

In this equation, U is the energy stored in the parallel plate capacitor without dielectric, q is charge, and C is the capacitance.

For part B, the battery is still connected. Thus, the equation q = CV is used to modify the above equation.

Thus, the energy stored in the parallel plate capacitor with the dielectric is given by,

U_ k = \frac{1}{2} \frac{k ^{2} C^ 2 V ^2}{kC} \\\\= \frac{1}{2}  kCV ^2

In this equation, Uk is the energy dissipated in the resistor, V is voltage, k is the dielectric constant, and C is the capacitance.

The equation of the energy stored in the parallel plate capacitor without dielectric is,

U= \frac{1}{2} \frac{C^ 2 V ^2}{C} \\\\= \frac{1}{2} CV ^2

In this equation, U is the energy dissipated in the resistor, V is voltage, k is the dielectric constant, and C is the capacitance.

(A)

The equation for energy dissipated in the resistor is,

 U _k = \frac{1}{2} \frac{q ^2}{kC}

Substitute U = \frac{1}{2}\frac{{{q^2}}}{C}  in the equation of {U_k}

U _k = \frac{1}{2} (\frac{1}{k} )\frac{q ^2}{C} \\\\= (\frac{1}{k} ) \frac{q^2}{C}\\\\ U_{k} = \frac{U}{k}

Note :

If the resistance relates to the capacitor, the energy stored in the capacitor is dissipated through the resistance. Thus, by substituting the equation of U, the expression is found out.

(B)

The equation for energy dissipated in the resistor is

U_{k} = \frac{1}{2}kCV^2

Here, V is voltage in the circuit.

Substitute U =\frac{1}{2} CV^2 in the equation of {U_k}

So,

        U_{k} = \frac{1}{2} kCV^2\\

       = k(\frac{1}{2} CV^2)

       U_{k} = kU

4 0
3 years ago
1) A rock thrown horizontally from the top of a
9966 [12]
Dx = 20m
V1 = 10m/s
g = 9.8m/s^2
(delta-t) = 2sec
dy = 19.6m 
3 0
3 years ago
Define moment of momentum. at which condition is it's magnitude zero?​
ololo11 [35]

Let's start with the concept of momentum. What is it? Linear momentum in physics is mathematically written as a product of mass and velocity of an object. Now let us suppose a body of mass m is moving in an inertial frame of reference with velocity v. Consider the fact that no external force is acting on the system. The momentum of this body is given by mv, where m is the mass and v is its velocity. In case of simple real world problems not delving into the realms of relativity, mass is a conserved quantity and it cannot be zero. Hence the velocity of the body must be zero and hence the momentum.

However, photons are considered to have a rest mass zero.

However note the point carefully "rest mass". A body in motion cannot have mass to be zero.

<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em><em> ❤️</em>

7 0
3 years ago
Other questions:
  • What would be the radius of the earth if it had its actual mass but had the density of nuclei?
    10·1 answer
  • Covalent compounds are usually described as
    10·1 answer
  • Why friction made it difficult to discover Newton’s first law of motion.
    7·1 answer
  • I need help on career prep
    11·1 answer
  • In an 8.00 km race, one runner runs at a steady 12.0 km/h and another runs at 14.8 km/h . How far from the finish line is the sl
    5·1 answer
  • A simply supported beam, 4" wide, 6" deep, and 16 ft. long carries a uniformly distributed load of 300 lb/ft (a) compute the she
    14·1 answer
  • Can you have constant speed with zero net force?
    11·1 answer
  • Calculate the acceleration of Josh riding his bicycle in a straight line that speeds up from 4 m/s to 6 m/s in 5 seconds
    13·2 answers
  • PLEASE HELP!!!!!! the independent variable is associated mainly with? A. control and experimental groupsB. the treatment that th
    6·2 answers
  • How does changing the amount of copper wire affect an electromagnet’s strength?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!