Answer:
(2, -4)
Step-by-step explanation:
The rotation of an object <u>turns</u> the object around a <u>fixed point</u> called the center of rotation.
A <u>rotation</u> of 90° counterclockwise means:
A 90° rotation counterclockwise with the origin (0, 0) as the center of rotation.
The rule for a counterclockwise rotation of 90° about the origin is:
(x, y) → (-y, x)
Therefore:
(-4, -2) → (2, -4)
Learn more about transformations here:
brainly.com/question/27013652
brainly.com/question/28225350
<h2>
The required solution is x = 6 and y = 11 </h2>
Step-by-step explanation:
Given system of equations are
x+5y = 11 and x-y =5
![X=\left[\begin{array}{c}x\\y\end{array}\right]](https://tex.z-dn.net/?f=X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D)
and ![B= \left[\begin{array}{c}11\\5\end{array}\right]](https://tex.z-dn.net/?f=B%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D11%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
∴AX=B
![adj A = \left[\begin{array}{cc}{-1}&{-5}\\{-1}&1\end{array}\right]](https://tex.z-dn.net/?f=adj%20A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%7B-1%7D%26%7B-5%7D%5C%5C%7B-1%7D%261%5Cend%7Barray%7D%5Cright%5D)

∴
So,![A^{-1} =\frac{ \left[\begin{array}{cc}{-1}&{-5}\\{-1}&1\end{array}\right]}{-6}](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%5Cfrac%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%7B-1%7D%26%7B-5%7D%5C%5C%7B-1%7D%261%5Cend%7Barray%7D%5Cright%5D%7D%7B-6%7D)
![A^{-1} ={ \left[\begin{array}{c \c} {{\frac{1}{6} }}&{\frac{5}{6}}\ \\ {{\frac{1}{6} }}&{\frac{-1}{6}} \end{array}\right]}](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20%5Cc%7D%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B5%7D%7B6%7D%7D%5C%20%5C%5C%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B-1%7D%7B6%7D%7D%20%5Cend%7Barray%7D%5Cright%5D%7D)

⇒![\left[\begin{array}{c}x\\y\end{array}\right] ={ \left[\begin{array}{c \c} {{\frac{1}{6} }}&{\frac{5}{6}}\ \\ {{\frac{1}{6} }}&{\frac{-1}{6}} \end{array}\right]} \times \left[\begin{array}{c}11\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20%5Cc%7D%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B5%7D%7B6%7D%7D%5C%20%5C%5C%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B-1%7D%7B6%7D%7D%20%5Cend%7Barray%7D%5Cright%5D%7D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D11%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
⇒![\left[\begin{array}{c}x\\y\end{array}\right] ={ \left[\begin{array}{c} {6}\\ {11} \end{array}\right]}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%20%20%7B6%7D%5C%5C%20%20%7B11%7D%20%5Cend%7Barray%7D%5Cright%5D%7D)
∴ x= 6 and y = 11
The required solution is x = 6 and y = 11
Good morning from Canada!
What we know:
-quire=25 sheets
-ream=100 sheets
So, we are looking for how many quires can fit into a ream. All we have to do is divide the number of sheets in a ream (100) by the number of sheets in a quire (25) because dividing allows us to see how many times a specific number can go into another number, which is what we are looking for. (How many quires are in a ream).
100/25=4
Therefore 4 quires can fit into a ream.
Hope this helps!
Answer:
32.5
Step-by-step explanation:
23x6÷4-2 and that's how you get your answer