1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
3 years ago
15

Why should we change worn out tyres. Topic》Frictional force​

Physics
1 answer:
Oksanka [162]3 years ago
8 0

Explanation:

it loses air pressure...

and low pressure can result in tire blowouts which can cause lost of control of your vehicle

You might be interested in
A merry-go-round with a rotational inertia of 600 kg m2 and a radius of 3.0 m is initially at rest. A 20 kg boy approaches the m
nekit [7.7K]

Answer:

The velocity of the merry-go-round after the boy hops on the merry-go-round is 1.5 m/s

Explanation:

The rotational inertia of the merry-go-round = 600 kg·m²

The radius of the merry-go-round = 3.0 m

The mass of the boy = 20 kg

The speed with which the boy approaches the merry-go-round = 5.0 m/s

F_T \cdot r = I \cdot \alpha  = m \cdot r^2  \cdot \alpha

Where;

F_T = The tangential force

I =  The rotational inertia

m = The mass

α = The angular acceleration

r = The radius of the merry-go-round

For the merry go round, we have;

I_m \cdot \alpha_m  = I_m \cdot \dfrac{v_m}{r \cdot t}

I_m = The rotational inertia of the merry-go-round

\alpha _m = The angular acceleration of the merry-go-round

v _m = The linear velocity of the merry-go-round

t = The time of motion

For the boy, we have;

I_b \cdot \alpha_b  = m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t}

Where;

I_b = The rotational inertia of the boy

\alpha _b = The angular acceleration of the boy

v _b = The linear velocity of the boy

t = The time of motion

When the boy jumps on the merry-go-round, we have;

I_m \cdot \dfrac{v_m}{r \cdot t} = m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t}

Which gives;

v_m = \dfrac{m_b \cdot r^2  \cdot \dfrac{v_b}{r \cdot t} \cdot r \cdot t}{I_m} = \dfrac{m_b \cdot r^2  \cdot v_b}{I_m}

From which we have;

v_m =  \dfrac{20 \times 3^2  \times 5}{600} =  1.5

The velocity of the merry-go-round, v_m, after the boy hops on the merry-go-round = 1.5 m/s.

5 0
3 years ago
an object at rest will remain at rest and an object in motion stays in straight-line motion unless acted upon by a_____ or unbal
LekaFEV [45]
Equal is the answer your looking for
5 0
3 years ago
A rock with mass m = 4.00 kg falls from rest in a viscous medium. The rock is acted on by a net constant downward force of F = 1
pogonyaev

Answer:

a) 4.35 m/s²

b) 2.73 m/s²

c) 7.25 m/s

d) 8.06 m/s

e) At t = 2 s

x = 16.5 m

v = 7.88 m/s

a = 0.099 m/s²

f) t = 0.743 s

Explanation:

Force balance on the rock

ma = 17.4 - F

4a = 17.4 - kv

4a = 17.4 - 2.16v

a) At the initial instant, F = kv = 0

4a = 17.4

a = 4.35 m/s²

b) When v = 3 m/s

4a = 17.4 - (2.16)(3) = 10.92

a = 2.73 m/s²

c) a₀ = 4.35 m/s²

0.1 a₀ = 0.435 m/s²

4a = 17.4 - 2.16v

4(0.435) = 17.4 - 2.16v

1.74 = 17.4 - 2.16v

2.16v = 15.66

v = 7.25 m/s

d) Terminal speed is when the body stops accelerating in the fluid

When a = 0

0 = 17.4 - 2.16v

2.16 v = 17.4

v = 8.06 m/s

e) 4a = 17.4 - 2.16v

a = 4.35 - 0.54 v

But a = dv/dt

(dv/dt) = 4.35 - 0.54v

∫ dv/(4.35 - 0.54v) = ∫ dt

Integrating the left hand side from 0 to v and the right hand side from 0 to t

- 1.852 In (4.35 - 0.54v) = t

In (4.35 - 0.54v) = - 0.54 t

4.35 - 0.54v = e⁻⁰•⁵⁴ᵗ

0.54v = 4.35 - e⁻⁰•⁵⁴ᵗ

v = 8.06 - 0.54 e⁻⁰•⁵⁴ᵗ

Then, v = dx/dt

(dx/dt) = 8.06 - 0.54 e⁻⁰•⁵⁴ᵗ

dx = (8.06 - 0.54 e⁻⁰•⁵⁴ᵗ) dt

∫ dx = ∫ (8.06 - 0.54 e⁻⁰•⁵⁴ᵗ) dt

Integrating the left hand side from 0 to x and the right hand side from 0 to t

x = 8.06t + e⁻⁰•⁵⁴ᵗ

Acceleration too can be obtained as a function of time

since v = 8.06 - 0.54 e⁻⁰•⁵⁴ᵗ and a = dv/dt

a = 0.54² e⁻⁰•⁵⁴ᵗ = 0.2916 e⁻⁰•⁵⁴ᵗ

At t = 2 s

Coordinate

x = 8.06t + e⁻⁰•⁵⁴ᵗ

x = (8.06)(2) + e^(-1.08) = 16.5 m down into the fluid.

Velocity

v = 8.06 - 0.54 e⁻⁰•⁵⁴ᵗ

v = 8.06 - 0.54 e^(-1.08) = 7.88 m/s

Acceleration

a = 0.2916 e⁻⁰•⁵⁴ᵗ

a = 0.2916 e^(-1.08) = 0.099 m/s²

f) t = ? When v = 0.9 × 8.06 = 7.254 m/s

v = 8.06 - 0.54 e⁻⁰•⁵⁴ᵗ

7.254 = 8.06 - 0.54e⁻⁰•⁵⁴ᵗ

- 0.806 = - 0.54 e⁻⁰•⁵⁴ᵗ

e⁻⁰•⁵⁴ᵗ = 1.493

0.54t = In 1.493 = 0.401

t = 0.743 s.

6 0
3 years ago
What is one possible effect of a hurricane in Florida?
Mice21 [21]

Answer:

The answer is B.

Explanation:

Hurricanes are known to cause strong storms and heavy flooding.

6 0
3 years ago
Read 2 more answers
What is the speed of the fastest baseball pitch ever thrown?
Annette [7]

The fastest pitch ever thrown was 105 MPH. Hope this helps!

4 0
3 years ago
Other questions:
  • When a pitcher throws a curve ball, the ball is given a fairly rapid spin?
    15·1 answer
  • How could you keep an objects acceleration the same if the force acting on the object were double?
    15·1 answer
  • What is the difference between a data table and a graph?
    11·2 answers
  • A gas can compress and change shape easily. How do these properties relate to the motion of atoms in a gas?
    9·1 answer
  • A crate with a mass of 187.5 kg is suspended from the end of a uniform boom. The upper end of the boom is supported by the tensi
    12·1 answer
  • 3. A bike rider accelerates uniformly at 2.0 m/s2 for 10.0
    12·2 answers
  • The greatest speed recorded by a baseball thrown by a pitcher was 162.3 km / h, obtained by Nolan Ryan in 1974. If the ball leav
    13·1 answer
  • b) When the ball is near its maximum height it experiences a brief gust of wind that reduces its horizontal velocity by 2.50 m/s
    12·1 answer
  • a city government received a $1 million grant to build swimming pools and skating rinks for youth. based on the data provided in
    5·1 answer
  • 2. Two small (green) objects, each of mass m, are separated by a solid, massless rod of length L. They are located so that one o
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!