Using the kinematic equation d = V_0 * t + 1/2 * a * t^2, where d is height you can rewrite this to be d = 1/2*g*t^2 or 4.9t^2
g = a because this is a free fall
d = 1/2 * 9.81m/s^2 * 2.5^2
d = 30.65625m
d = 30.7m
Answer:
Final velocity at the top of the ramp is 6.58m/s
Explanation
Check the attachment
Answer:
Aluminium
Explanation:
When a body is immersed in a liquid partly or wholly it experiences an upward force which is called buoyant force.
The amount of buoyant force depends on the volume of body immersed, density of liquid and the value of acceleration due to gravity.
Here, the density of liquid is same in both the cases and g be the same. So, here the amount of buoyant force depends on the volume of body immersed.
As the density of lead is more than the density of aluminium, so the volume of aluminium is more than lead, as volume is equal to mass divided by density. So, the buoyant force acting on the aluminium is more than lead.
Answer:
so initial speed of the rock is 30.32 m/s
correct answer is b. 30.3 m/s
Explanation:
given data
h = 15.0m
v = 25m/s
weight of the rock m = 3.00N
solution
we use here work-energy theorem that is express as here
work = change in the kinetic energy ..............................1
so it can be written as
work = force × distance ...................2
and
KE is express as
K.E = 0.5 × m × v²
and it can be written as
F × d = 0.5 × m × (vf)² - (vi)² ......................3
here
m is mass and vi and vf is initial and final velocity
F = mg = m (-9.8) , d = 15 m and v{f} = 25 m/s
so put value in equation 3 we get
m (-9.8) × 15 = 0.5 × m × (25)² - (vi)²
solve it we get
(vi)² = 919
vi = 30.32 m/s
so initial speed of the rock is 30.32 m/s
Time should not be messed with
for bad things could happen
so think before you act or you'll regret it