<span>3598 seconds
The orbital period of a satellite is
u=GM
p = sqrt((4*pi/u)*a^3)
Where
p = period
u = standard gravitational parameter which is GM (gravitational constant multiplied by planet mass). This is a much better figure to use than GM because we know u to a higher level of precision than we know either G or M. After all, we can calculate it from observations of satellites. To illustrate the difference, we know GM for Mars to within 7 significant figures. However, we only know G to within 4 digits.
a = semi-major axis of orbit.
Since we haven't been given u, but instead have been given the much more inferior value of M, let's calculate u from the gravitational constant and M. So
u = 6.674x10^-11 m^3/(kg s^2) * 6.485x10^23 kg = 4.3281x10^13 m^3/s^2
The semi-major axis of the orbit is the altitude of the satellite plus the radius of the planet. So
150000 m + 3.396x10^6 m = 3.546x10^6 m
Substitute the known values into the equation for the period. So
p = sqrt((4 * pi / u) * a^3)
p = sqrt((4 * 3.14159 / 4.3281x10^13 m^3/s^2) * (3.546x10^6 m)^3)
p = sqrt((12.56636 / 4.3281x10^13 m^3/s^2) * 4.458782x10^19 m^3)
p = sqrt(2.9034357x10^-13 s^2/m^3 * 4.458782x10^19 m^3)
p = sqrt(1.2945785x10^7 s^2)
p = 3598.025212 s
Rounding to 4 significant figures, gives us 3598 seconds.</span>
Answer:
(a) the mechanical energy of the system, U = 0.1078 J
(b) the maximum speed of the object, Vmax = 0.657 m/s
(c) the maximum acceleration of the object, a_max = 15.4 m/s²
Explanation:
Given;
Amplitude of the spring, A = 2.8 cm = 0.028 m
Spring constant, K = 275 N/m
Mass of object, m = 0.5 kg
(a) the mechanical energy of the system
This is the potential energy of the system, U = ¹/₂KA²
U = ¹/₂ (275)(0.028)²
U = 0.1078 J
(b) the maximum speed of the object

(c) the maximum acceleration of the object

I believe you mean 6.02*10^7 but you want to shift the decimal 7 times to the right which would be 60200000 (:
Answer:
- Distance is a scalar quantity, defined as the total amount of space covered by an object while moving between the final position and the initial position. Therefore, it depends on the path the object has taken: the distance will be minimum if the object has travelled in a straight line, while it will be larger if the object has taken a non-straight path.
- Displacement is a vector quantity, whose magnitude is equal to the distance (measured in a straight line) between the final position and the initial position of the object. Therefore, the displacement does NOT depend on the path taken, but only on the initial and final point of the motion.
If the object has travelled in a straight path, then the displacement is equal to the distance. In all other cases, the distance is always larger than the displacement.
A particular case is when an object travel in a circular motion. Assuming the object completes one full circle, we have:
- The distance is the circumference of the circle
- The displacement is zero, because the final point corresponds to the initial point