Thank you for your question, what you say is true, the gravitational force exerted by the Earth on the Moon has to be equal to the centripetal force.
An interesting application of this principle is that it allows you to determine a relation between the period of an orbit and its size. Let us assume for simplicity the Moon's orbit as circular (it is not, but this is a good approximation for our purposes).
The gravitational acceleration that the Moon experience due to the gravitational attraction from the Earth is given by:
ag=G(MEarth+MMoon)/r2
Where G is the gravitational constant, M stands for mass, and r is the radius of the orbit. The centripetal acceleration is given by:
acentr=(4 pi2 r)/T2
Where T is the period. Since the two accelerations have to be equal, we obtain:
(4 pi2 r) /T2=G(MEarth+MMoon)/r2
Which implies:
r3/T2=G(MEarth+MMoon)/4 pi2=const.
This is the so-called third Kepler law, that states that the cube of the radius of the orbit is proportional to the square of the period.
This has interesting applications. In the Solar System, for example, if you know the period and the radius of one planet orbit, by knowing another planet's period you can determine its orbit radius. I hope that this answers your question.
Answer:
2.86 m
Explanation:
Given:
M₁ = 10 kg
M₂ = 5 kg
= 0.5
height, h = 5 m
distance traveled, s = 2 m
spring constant, k = 250 N/m
now,
the initial velocity of the first block as it approaches the second block
u₁ = √(2 × g × h)
or
u₁ = √(2 × 9.8 × 5)
or
u₁ = 9.89 m/s
let the velocity of second ball be v₂
now from the conservation of momentum, we have
M₁ × u₁ = M₂ × v₂
on substituting the values, we get
10 × 9.89 = 5 × v₂
or
v₂ = 19.79 m/s
now,
let the velocity of mass 2 when it reaches the spring be v₃
from the work energy theorem, we have
Work done by the friction force = change in kinetic energy of the mass 2
or

or
v₃ = 20.27 m/s
now, let the spring is compressed by the distance 'x'
therefore, from the conservation of energy
we have
Energy of the spring = Kinetic energy of the mass 2
or

on substituting the values, we get

or
x = 2.86 m
Answer:
i think..its fraction that its have multiple fractions on it..if you minus the 397 000-355 it should be 381+ so i say if you get the 5 multiply it by 9!! so you will get it!
Explanation:
HOPE IT HELPS!!
The first scientist to show that atoms emit any negative particles was : J.J Thomson
374848282!,!( rnanxjcifjejzxj