Answer:
The question lacks a photo to fully answer correctly
If the fossil has its neck bent backwards towards its back, that is the common way to which dinosaurs died.
If the fossil is scattered a bit from its other linking fossil pieces, than it is most likely that the dinosaur was a meal to a predator.
Fossils that are in array but are divided clearly at a section suggests that land moved. Possibly earthquake or Pangea took place.
Based on Newton's first and second law of motion most people would find it less painful to catch a flying baseball than a bowling ball flying at the same speed as the baseball because the mass of the baseball is smaller and will require smaller force to be stopped.
<h3>
What is Newton's first law of motion?</h3>
Newton's first law of motion first law of motion states that a body at rest or uniform motion in a straight line will continue in that path unless acted upon by an external force.
Newton's first law of motion is also called law of inertia because it depends on mass of the object.
An object with a greater mass will require greater force to be stopped or get moving.
Based on Newton's first law of motion most people would find it less painful to catch a flying baseball than a bowling ball flying at the same speed as the baseball because the mass of the baseball is smaller and will require smaller force to be stopped.
Also according to Newton's second law of motion, the force applied to an object is proportional to the product of mass and acceleration of the object. Thus, a baseball with smaller mass will require smaller force to be stopped.
Learn more about Newton's first law of motion here: brainly.com/question/10454047
#SPJ1
Your velocity forward in would be 1.66 m/s. to solve you would use the velocity equation.
Answer
Pressure, P = 1 atm
air density, ρ = 1.3 kg/m³
a) height of the atmosphere when the density is constant
Pressure at sea level = 1 atm = 101300 Pa
we know
P = ρ g h


h = 7951.33 m
height of the atmosphere will be equal to 7951.33 m
b) when air density decreased linearly to zero.
at x = 0 air density = 0
at x= h ρ_l = ρ_sl
assuming density is zero at x - distance

now, Pressure at depth x


integrating both side


now,


h = 15902.67 m
height of the atmosphere is equal to 15902.67 m.
The critical angle formula should be: sin^-1(1/n)
where "n" is 1.501 into the air
<span>The critical angle of light travelling from benzene, happens because the larger angles of incidence from the inside of the benzene has experienced the total internal reflection. </span>