Laws and theories are similar in that they are both scientific statements that result from a tested hypothesis and are supported by scientific evidence.
Answer:
Explanation:
From newton's equation of motion of uniform acceleration
v = u + at
where v is final velocity , u is initial velocity , a is acceleration and time is t .
putting the values
v = 0 + .5 x 3 x 60 ( time in second = 3 x 60 s )
= 90 m /s
So , final velocity is 90 m /s .
Answer:
A
Explanation:
Resistors in series add. There is only one path the current can take. That's why Christmas Tree lights sometimes give a lot of trouble. If a bulb burns out, it could be any one of them and time is needed to find the burned out bulb.
That being the case R = R1 + R2
R1 = 50 ohms
R2 = 50 ohms
R = 50 + 50
R = 100 ohms
Answer A
Average Velocity = Total Displacement / Total time
1st part of journey, 350 km at velocity 125 km/h
Time = 350 / 125 = 2.8 hours.
2nd part of journey, 220 km at velocity 115 km/h
Time = 220 / 115 = 1.9 hours
Average Velocity = Total Displacement / Total time
= (350 + 220) / (2.8 + 1.9)
= 570 / 4.7 ≈ 121.3 km/hr
Average Velocity ≈ 121 km/hr due south.
Option C.
Answer:
The longest wavelength of light is 666.7 nm
Explanation:
The general form of the grating equation is
mλ = d(sinθi + sinθr)
where;
m is third-order maximum = 3
λ is the wavelength,
d is the slit spacing (m/slit)
θi is the incident angle
θr is the diffracted angle
Note: at longest wavelength, sinθi + sinθr = 1
λ = d/m
d = 1/500 slits/mm
λ = 1 mm/(500 *3) = 1mm/1500 = 666.7 X 10⁻⁶ mm = 666.7 nm
Therefore, the longest wavelength of light is 666.7 nm