Answer:
vyuWYIRTG3ñwyiehg
Step-by-step explanation:
Answer:
Given
Step-by-step explanation:
Given that: △RST ~ △VWX, TU is the altitude of △RST, and XY is the altitude of △VWX.
Comparing △RST and △VWX;
TU ~ XY (given altitudes of the triangles)
<TUS = <XYW (all right angles are congruent)
<UTS ≅ <YXW (angle property of similar triangles)
Thus;
ΔTUS ≅ ΔXYW (congruent property of similar triangles)
<UTS + <TUS + < UST = <YXW + <XTW + <XWY =
(sum of angles in a triangle)
Therefore by Angle-Angle-Side (AAS), △RST ~ △VWX
So that:
=
(corresponding side length proportion)
Step-by-step explanation:
(a) If his second pass is the first that he completes, that means he doesn't complete his first pass.
P = P(not first) × P(second)
P = (1 − 0.694) (0.694)
P ≈ 0.212
(b) This time we're looking for the probability that he doesn't complete the first but does complete the second, or completes the first and not the second.
P = P(not first) × P(second) + P(first) × P(not second)
P = (1 − 0.694) (0.694) + (0.694) (1 − 0.694)
P ≈ 0.425
(c) Finally, we want the probability he doesn't complete either pass.
P = P(not first) × P(not second)
P = (1 − 0.694) (1 − 0.694)
P ≈ 0.094
F(x)= -x + 2
Plug in the X and you will find the Y
Answer:
3/8
Step-by-step explanation: