Answer:
The critical value for a 98% CI is z=2.33.
The 98% confidence interval for the mean is (187.76, 194.84).
Step-by-step explanation:
We have to develop a 98% confidence interval for the mean number of minutes per day that children between the age of 6 and 18 spend watching television per day.
We know the standard deveiation of the population (σ=21.5 min.).
The sample mean is 191.3 minutes, with a sample size n=200.
The z-value for a 98% CI is z=2.33, from the table of the standard normal distribution.
The margin of error is:

With this margin of error, we can calculate the lower and upper bounds of the CI:

The 98% confidence interval for the mean is (187.76, 194.84).
The sum of the numbers 14 is 2=2 and the product of 39 is 0
Answer:
Sí, 2 • 10 = 20. Luego factoriza 10, que también es divisible entre 2 (2 • 5 = 10). Ambos factores son primos, por lo que puedes detenerte. La factorización prima de 20 es 2 • 2 • 5, la cual puedes escribir usando la notación exponencial como 22 • 5.
Step-by-step explanation:
espero que esto ayude ;)
Answer:

General Formulas and Concepts:
<u>Pre-Calculus</u>
<u>Calculus</u>
- Limits
- Limit Rule [Variable Direct Substitution]:

- Integrals
- Integration Rule [Fundamental Theorem of Calculus 1]:

- Trig Integration
- Improper Integrals
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate</u>
- [Improper Integral] Rewrite:

- [Integral] Trig Integration:

- [Integral] Evaluate [Integration Rule - FTC 1]:

- Evaluate trig:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

Since we are dealing with infinity of functions, we can do a numerous amount of things:
- Since -sin(x) is a shift from the parent graph sin(x), we can say that -sin(∞) = sin(∞) since sin(x) is an oscillating graph. The values of -sin(x) already have values in sin(x).
- Since sin(x) is an oscillating graph, we can also say that the integral actually equates to undefined, since it will never reach 1 certain value.
∴ 
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Improper Integrals
Book: College Calculus 10e