11154/52= 214 1/2 is the answer to this question
The side of the small triangle that will correspond to the side of HI is side IK.
<h3>How to find corresponding side of similar triangles?</h3>
Similar triangles are triangles that have the same shape but different size.
In similar triangles, corresponding sides are always in the same ratio.
The corresponding angles are equal.
Therefore, the side of the small triangle that will correspond to the side of HI is side IK.
learn more on triangle here: brainly.com/question/26531534
#SPJ1
Answer:
49
Step-by-step explanation:
(3+2²)²
(3+4)²
(7)²
49
If you're using the app, try seeing this answer through your browser: brainly.com/question/2308127_______________
Write the expression below in terms of x and y only:
(I'm going to call it "E")
![\mathsf{E=sin\!\left[sin^{-1}(x)+cos^{-1}(y)\right]\qquad\quad(i)}](https://tex.z-dn.net/?f=%5Cmathsf%7BE%3Dsin%5C%21%5Cleft%5Bsin%5E%7B-1%7D%28x%29%2Bcos%5E%7B-1%7D%28y%29%5Cright%5D%5Cqquad%5Cquad%28i%29%7D)
Let

so the expression becomes

• Finding

![\mathsf{sin\,\alpha=sin\!\left[sin^{-1}(x)\right]}\\\\ \mathsf{sin\,\alpha=x\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7Bsin%5C%2C%5Calpha%3Dsin%5C%21%5Cleft%5Bsin%5E%7B-1%7D%28x%29%5Cright%5D%7D%5C%5C%5C%5C%20%5Cmathsf%7Bsin%5C%2C%5Calpha%3Dx%5Cqquad%5Cquad%5Ccheckmark%7D)
• Finding


because

is positive for
![\mathsf{\alpha\in \left[-\frac{\pi}{2},\,\frac{\pi}{2}\right].}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Calpha%5Cin%20%5Cleft%5B-%5Cfrac%7B%5Cpi%7D%7B2%7D%2C%5C%2C%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright%5D.%7D)
• Finding

![\mathsf{cos\,\beta=cos\!\left[cos^{-1}(y)\right]}\\\\ \mathsf{cos\,\beta=y\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7Bcos%5C%2C%5Cbeta%3Dcos%5C%21%5Cleft%5Bcos%5E%7B-1%7D%28y%29%5Cright%5D%7D%5C%5C%5C%5C%20%5Cmathsf%7Bcos%5C%2C%5Cbeta%3Dy%5Cqquad%5Cquad%5Ccheckmark%7D)
• Finding


because

is positive for
![\mathsf{\beta\in [0,\,\pi].}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cbeta%5Cin%20%5B0%2C%5C%2C%5Cpi%5D.%7D)
Finally, you get
![\mathsf{E=x\cdot y +\sqrt{1-y^2}\cdot \sqrt{1-x^2}}\\\\\\ \therefore~~\mathsf{sin\!\left[sin^{-1}(x)+cos^{-1}(y)\right]=x\cdot y +\sqrt{1-y^2}\cdot \sqrt{1-x^2}\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7BE%3Dx%5Ccdot%20y%20%2B%5Csqrt%7B1-y%5E2%7D%5Ccdot%20%5Csqrt%7B1-x%5E2%7D%7D%5C%5C%5C%5C%5C%5C%20%5Ctherefore~~%5Cmathsf%7Bsin%5C%21%5Cleft%5Bsin%5E%7B-1%7D%28x%29%2Bcos%5E%7B-1%7D%28y%29%5Cright%5D%3Dx%5Ccdot%20y%20%2B%5Csqrt%7B1-y%5E2%7D%5Ccdot%20%5Csqrt%7B1-x%5E2%7D%5Cqquad%5Cquad%5Ccheckmark%7D)
I hope this helps. =)
Tags: <em>inverse trigonometric trig function sine cosine sin cos arcsin arccos sum angles trigonometry</em>
Answer:
Step-by-step explanation:
½ of ⅖ of 3¼ = ⅕ of 3¼
= ⅕ of 13/4
= 13/20