Answer:
23:600
24
a12
b27
c36
d45
Step-by-step explanation:
Answer:
9.765625×10^6
Step-by-step explanation:
Simplify the following:
5^2×5^9/5
Hint: | Express 5^2×5^9/5 as a single fraction.
5^2×5^9/5 = (5^2×5^9)/5:
(5^2×5^9)/5
Hint: | For all exponents, a^n/a^m = a^(n - m). Apply this to (5^2×5^9)/5.
Combine powers. (5^2×5^9)/5 = 5^(9 + 2 - 1):
5^(9 + 2 - 1)
Hint: | Evaluate 9 + 2.
9 + 2 = 11:
5^(11 - 1)
Hint: | Subtract 1 from 11.
| 1 | 1
- | | 1
| 1 | 0:
5^10
Hint: | Compute 5^10 by repeated squaring. For example a^7 = a a^6 = a (a^3)^2 = a (a a^2)^2.
5^10 = (5^5)^2 = (5×5^4)^2 = (5 (5^2)^2)^2:
(5 (5^2)^2)^2
Hint: | Evaluate 5^2.
5^2 = 25:
(5×25^2)^2
Hint: | Evaluate 25^2.
| 2 | 5
× | 2 | 5
1 | 2 | 5
5 | 0 | 0
6 | 2 | 5:
(5×625)^2
Hint: | Multiply 5 and 625 together.
5×625 = 3125:
3125^2
Hint: | Evaluate 3125^2.
| | | 3 | 1 | 2 | 5
× | | | 3 | 1 | 2 | 5
| | 1 | 5 | 6 | 2 | 5
| | 6 | 2 | 5 | 0 | 0
| 3 | 1 | 2 | 5 | 0 | 0
9 | 3 | 7 | 5 | 0 | 0 | 0
9 | 7 | 6 | 5 | 6 | 2 | 5:
Answer: | 9765625 = 9.765625×10^6
Answer:
M = 4.33885225095
Step-by-step explanation:
Area of the square ABFE = 10² = 100
M = 100 - (2P + Q)
Let’s calculate 2P + Q :
The area 2P + Q = area ΔABC + area of sector ACE + area of sector BCF
Note :
ΔABC is an equilateral triangle
m∠CBF = m∠CAE = 30°
area ΔABC = (CG × AB)÷2 = (8.660254037844×10)÷2 = 43.30127018922
CG = √(10^2 - 5^2)=8.660254037844 (Pythagorean theorem)
area of sector BCF = area ΔACE = 100π ÷ 12 = (8.333333333333)π
then
Area 2P + Q = area ΔABC + area sector ACE + area sector BCF
= 43.30127018922+(100÷12)π+(100÷12)π
= 43.30127018922+ (8.333333333333)π + (8.333333333333)π
= 95.66114774905
Conclusion:
M = 100 - (2P + Q) = 100-95.66114774905 = 4.33885225095
Answer:
c
Step-by-step explanation:associative: a+(b+c)=(a+b)+c
commutative: a+b=b+a
distributive: a(b+c)=ab+ac
inverse: I think it is a times 1/a=1, doesn't matter
Answer:
Step-by-step explanation:
Pythagorean Theorem formula is
a^2 + b^2 = c^2