I'm assuming that you meant:
y = 7x² + 3
Remember! Inputs are always x values (unless stated otherwise). Meaning the problem says:
x = 4
y = 7(4)² + 3
The square only applies to the 4. The 7 is not going to be squared! (To be exact it only applies to whatever the value of x is.
4² = 4·4 = 16
Remember:
Parenthesis
Exponents
Multiplication
Division
Addition
Subtraction
Follow PEMDAS from left to right (or in the case above from top to bottom).
7·16 + 3 = ?
16·7 = 10·7 + 6·7 = 70 + 42 = 112
(All I did to multiply was break it up into parts. If it confuses you don't worry about it, and just multiply it out like normal or use a calculator if you are allowed to)
112 + 3 = ?
Our output is:
115!
Part A
Everything looks good but line 4. You need to put all of the "2h" in parenthesis so the teacher will know you are squaring all of 2h. As you have it right now, you are saying "only square the h, not the 2". Be careful as silly mistakes like this will often cost you points.
============================================================
Part B
It looks like you have the right answer. Though you'll need to use parenthesis to ensure that all of "75t/(2pi)" is under the cube root. I'm assuming you made a typo or forgot to put the parenthesis.
dh/dt = (25)/(2pi*h^2)
2pi*h^2*dh = 25*dt
int[ 2pi*h^2*dh ] = int[ 25*dt ] ... applying integral to both sides
(2/3)pi*h^3 = 25t + C
2pi*h^3 = 3(25t + C)
h^3 = (3(25t + C))/(2pi)
h^3 = (75t + 3C)/(2pi)
h^3 = (75t + C)/(2pi)
h = [ (75t + C)/(2pi) ]^(1/3)
Plug in the initial conditions. If the volume is V = 0 then the height is h = 0 at time t = 0
0 = [ (75(0) + C)/(2pi) ]^(1/3)
0 = [ (0 + C)/(2pi) ]^(1/3)
0 = [ (C)/(2pi) ]^(1/3)
0^3 = (C)/(2pi)
0 = C/(2pi)
C/(2pi) = 0
C = 0*2pi
C = 0
Therefore the h(t) function is...
h(t) = [ (75t + C)/(2pi) ]^(1/3)
h(t) = [ (75t + 0)/(2pi) ]^(1/3)
h(t) = [ (75t)/(2pi) ]^(1/3)
Answer:
h(t) = [ (75t)/(2pi) ]^(1/3)
============================================================
Part C
Your answer is correct.
Below is an alternative way to find the same answer
--------------------------------------
Plug in the given height; solve for t
h(t) = [ (75t)/(2pi) ]^(1/3)
8 = [ (75t)/(2pi) ]^(1/3)
8^3 = (75t)/(2pi)
512 = (75t)/(2pi)
(75t)/(2pi) = 512
75t = 512*2pi
75t = 1024pi
t = 1024pi/75
At this time value, the height of the water is 8 feet
Set up the radius r(t) function
r = 2*h
r = 2*h(t)
r = 2*[ (75t)/(2pi) ]^(1/3) .... using the answer from part B
Differentiate that r(t) function with respect to t
r = 2*[ (75t)/(2pi) ]^(1/3)
dr/dt = 2*(1/3)*[ (75t)/(2pi) ]^(1/3-1)*d/dt[(75t)/(2pi)]
dr/dt = (2/3)*[ (75t)/(2pi) ]^(-2/3)*(75/(2pi))
dr/dt = (2/3)*(75/(2pi))*[ (75t)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (75t)/(2pi) ]^(-2/3)
Plug in t = 1024pi/75 found earlier above
dr/dt = (25/pi)*[ (75t)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (75(1024pi/75))/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (1024pi)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*(1/64)
dr/dt = 25/(64pi)
getting the same answer as before
----------------------------
Thinking back as I finish up, your method is definitely shorter and more efficient. So I prefer your method, which is effectively this:
r = 2h, dr/dh = 2
dh/dt = (25)/(2pi*h^2) ... from part A
dr/dt = dr/dh*dh/dt ... chain rule
dr/dt = 2*((25)/(2pi*h^2))
dr/dt = ((25)/(pi*h^2))
dr/dt = ((25)/(pi*8^2)) ... plugging in h = 8
dr/dt = (25)/(64pi)
which is what you stated in your screenshot (though I added on the line dr/dt = dr/dh*dh/dt to show the chain rule in action)
Solution: Which statement about the scatter plot is true?
The correct answer is option A. As the number of weeks in class increases, the number of keyboarding mistakes decreases.
Explanation: From the scatter plot, we clearly see there exists a negative linear relationship between the number of weeks in class and the number of mistakes. And we know that if there exists a negative linear relationship between the two variables, then the values of two variables move in opposite direction. If the values of one variable goes up, the values of other variable go down. From the given scatter plot, we clearly see the number of mistakes goes down as the number of weeks in class increases. Therefore, the option A is correct
Average:
4.4 / 3 = 1.4666666666667
Count:
3
Sum:
4.4
Average:
4.4 / 3 = 1.4666666666667
Count:
3
Sum:
4.4
The odds ot landing on an odd or an even number are the same. So the probability of landing on an odd number is 50%.