Answer:
Range of player's height = 9 inch
Step-by-step explanation:
Given:
Number of players Height range
4 66-67
8 68 -69
14 70-71
9 72-73
1 74-75
Find:
Range of player's height
Computation:
Range = Maximum value - Minimum Value
Range of player's height = Maximum height of a player - height of a player
Range of player's height = 75 inch - 66 inch
Range of player's height = 9 inch
Answer:
Step-by-step explanation:
The original price of the wind chimes at the home improvement store is $w.
A customer signed up for a free membership card and received a 5% discount off the price. The value of the discount is
5/100 × w = 0.05w
The discounted price would be
w - 0.05w = 0.95w
Sales tax of 6% was applied after the discount. The amount of sales tax applied would be
6/100 × 0.95w = 0.057w
The algebraic expression to represent the final price of the wind chime is
0.95w + 0.057w
= 1.007w
7MM because the prisma is retangular so the answer is c
12 songs. 25% of 12 is 3, so you add 3 to 12 and get 15. You then find that 20% of 15 is 3 so you subtract 3 from 15 and get 12 again.
First of all, when I do all the math on this, I get the coordinates for the max point to be (1/3, 14/27). But anyway, we need to find the derivative to see where those values fall in a table of intervals where the function is increasing or decreasing. The first derivative of the function is

. Set the derivative equal to 0 and factor to find the critical numbers.

, so x = -3 and x = 1/3. We set up a table of intervals using those critical numbers, test a value within each interval, and the resulting sign, positive or negative, tells us where the function is increasing or decreasing. From there we will look at our points to determine which fall into the "decreasing" category. Our intervals will be -∞<x<-3, -3<x<1/3, 1/3<x<∞. In the first interval test -4. f'(-4)=-13; therefore, the function is decreasing on this interval. In the second interval test 0. f'(0)=3; therefore, the function is increasing on this interval. In the third interval test 1. f'(1)=-8; therefore, the function is decreasing on this interval. In order to determine where our points in question fall, look to the x value. The ones that fall into the "decreasing" category are (2, -18), (1, -2), and (-4, -12). The point (-3, -18) is already a min value.