Answer:
Speed of aircraft ; (V_1) = 83.9 m/s
Explanation:
The height at which aircraft is flying = 3000 m
The differential pressure = 3200 N/m²
From the table i attached, the density of air at 3000 m altitude is; ρ = 0.909 kg/m3
Now, we will solve this question under the assumption that the air flow is steady, incompressible and irrotational with negligible frictional and wind effects.
Thus, let's apply the Bernoulli equation :
P1/ρg + (V_1)²/2g + z1 = P2/ρg + (V_2)²/2g + z2
Now, neglecting head difference due to high altitude i.e ( z1=z2 ) and V2 =0 at stagnation point.
We'll obtain ;
P1/ρg + (V_1)²/2g = P2/ρg
Let's make V_1 the subject;
(V_1)² = 2(P1 - P2)/ρ
(V_1) = √(2(P1 - P2)/ρ)
P1 - P2 is the differential pressure and has a value of 3200 N/m² from the question
Thus,
(V_1) = √(2 x 3200)/0.909)
(V_1) = 83.9 m/s
D D D D D D D D D D D D D D D DdDdddddf
HELP ILL GIVE MOST BRAINLY AND 50 POINTS
HURRY PLEASE component c it is a compound so it will break
Answer:
(absolute).
Explanation:
Given that
Pressure ratio r
r=8

-----1
P₁(gauge) = 5.5 psig
We know that
Absolute pressure = Atmospheric pressure + Gauge pressure
Given that
Atmospheric pressure = 14.5 lbf/in²
P₁(abs) = 14.5 + 5.5 psia
P₁(abs) =20 psia
Now by putting the values in the above equation 1
Therefore the exit gas pressure will be 160 psia (absolute).
Answer:
A single- shear pin connection.
Explanation: