1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexeev081 [22]
3 years ago
10

Use the drop-down menus to choose the correct term or words to complete the statements.

Engineering
1 answer:
aleksklad [387]3 years ago
7 0

Explanation:

Search PubMed v use drop down menu and choose MeSH MeSH term: select MeSH ... Tree) Use Links (right side of screen) to return to PubMed and complete the search (Default): ...

Iven Klineberg, ‎Diana Kingston - 2012 -

You might be interested in
What is the fastest plane in the world
Aleonysh [2.5K]

Answer:

Lockheed SR-71 Blackbird

Explanation:

7 0
3 years ago
Read 2 more answers
Consider two different versions of algorithm for finding gcd of two numbers (as given below), Estimate how many times faster it
juin [17]

Answer:

Explanation:

Step 1:

a) The formula for compute greatest advisor is

     gcd(m,n) = gcd (n,m mod n)

the gcd(31415,14142) by applying Euclid's algorithm is

    gcd(31,415,14,142) =gcd(14,142,3,131)

                                  =gcd=(3,131, 1,618)

                                   =gcd(1,618, 1,513)

                                   =gcd(1,513, 105)

                                   =gcd(105, 43)

                                    =gcd(43, 19)

                                     =gcd(19, 5)

                                      =gcd(5, 4)

                                      =gcd(4, 1)

                                      =gcd(1, 0)

                                      =1

STEP 2

b)  The number of comparison of given input with the algorithm based on  checking consecutive integers and Euclid's algorithm is

     The number of division using Euclid's algorithm =10 from part (a)

      The consecutive integer checking algorithm:

      The number of iterations =14,142 and 1 or 2 division of iteration.

        14,142 ∠= number of division∠ = 2*14,142

         Euclid's algorithm is faster by at least 14,142/10 =1400 times

          At most 2*14,142/10 =2800 times.

5 0
3 years ago
The inlet and exhaust flow processes are not included in the analysis of the Otto cycle. How do these processes affect the Otto
lara31 [8.8K]

Answer:

Suction and exhaust processes do not affect the performance of Otto cycle.

Explanation:

Step1

Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.

Step2

Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.

Step3

The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:

Process 0-1 is suction process and process 1-0 is exhaust process.

7 0
3 years ago
Water from the Earth's surface turns into a gas, or water vapor, when it is warmed and
bagirrra123 [75]

Answer:

Evaporation.

Explanation:

Evaporation is the stage of the Water Cycle where water turns into water vapor. The steps following Evaporation in order include Condensation, Precipitation, and Transpiration.

4 0
3 years ago
Read 2 more answers
Design circuits that demonstrate all of the principles listed below. Set up the circuits and take measurements to show that the
Nata [24]

<u>Explanation</u>:

For series

\Delta V=V_{1}+V_{2}+\ldots+V_{n}=I R_{1}+I R_{2}+\ldots+I R_{n}(\text {voltages add to the batter } y)

\(I=I_{1}=I_{2}=I_{n}\) (current is the same)

V=I R(\text {voltage is directly proportional to } R)

R_{e q}=R_{1}+R_{2}+\ldots+R_{n} \quad \text { (resistance increase) }

For parallel

\Delta V=\Delta V_{1}=\Delta V_{2}=\Delta V_{n} \quad(\text { same voltage })

I=I_{1}+I_{2}+\ldots+I_{n}(\text {current adds})

\(I=\frac{\Delta V}{R_{e q}} \quad(R \text { inversal } y \text { proportional to } I)\)

\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots+\frac{1}{R_{n}}

3 0
3 years ago
Other questions:
  • While discussing run-flat tires: Technician A says that some are self-sealing tires and are designed to quickly and permanently
    15·1 answer
  • 2 Consider airflow over a plate surface maintained at a temperature of 220°C. The temperature profile of the airflow is given as
    13·1 answer
  • A water jet strikes normal to a fixed plate. If diameter of the outlet of the nozzle is 8 cm,and velocity of water at the outlet
    11·1 answer
  • Create a document that includes a constructor function named Company in the document head area. Include four properties in the C
    7·1 answer
  • List two possible reasons the engine oil could have a strong gasoline smell
    15·1 answer
  • For the same cross-sectional area, which column provides the higher buckling load: a circular bar or a circular tube?
    15·1 answer
  • A coil consists of 200 turns of copper wire and have a cross-sectional area of 0.8 mmm square.The mean length per turn is 80 cm
    13·1 answer
  • a coiled spring is stretched 31.50 cm by a 2.00N weight. How far is it stretched by a 10.00 N weight?
    6·1 answer
  • Javier’s class visited a power plant near his city, and they learned how it produced electricity. What does this form of power d
    7·1 answer
  • s) Use Cramer’s rule to solve the system below, and state the condition at which solution exists. ax+by = 1 cx+dy =−1
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!