1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leno4ka [110]
3 years ago
5

The Torricelli's theorem states that the (velocity—pressure-density) of liquid flowing out of an orifice is proportional to the

square root of the (height-pressure-velocity) of liquid above the center of the orifice.
Engineering
1 answer:
Sergeeva-Olga [200]3 years ago
4 0

Answer:

The correct answer is 'velocity'of liquid flowing out of an orifice is proportional to the square root of the 'height'  of liquid above the center of the orifice.

Explanation:

Torricelli's theorem states that

v_{exit}=\sqrt{2gh}

where

v_{exit} is the velocity with which the fluid leaves orifice

h is the head under which the flow occurs.

Thus we can compare the given options to arrive at the correct answer

Velocity is proportional to square root of head under which the flow occurs.

You might be interested in
Thin film deposition is a process where: a)-elemental, alloy, or compound thin films are deposited onto a bulk substrate! b)-Pho
marshall27 [118]

Answer:

(A) elemental, alloy, or compound thin films are deposited on to a bulk substrate

Explanation:

In film deposition there is process of depositing of material in form of thin films whose size varies between the nano meters to micrometers onto a surface. The material can be a single element a alloy or a compound.

This technology is very useful in semiconductor industries, in solar panels in CD drives etc

so from above discussion it is clear that option (a) will be the correct answer

8 0
3 years ago
A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
Bad White [126]

Answer:

the net work per cycle \mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, W = 88.0144746 hp

Explanation:

the information given includes;

diameter of the four-cylinder bore = 3.7 in

length of the stroke = 3.4 in

The clearance volume = 16% = 0.16

The cylindrical volume V_2 = 0.16 V_1

the crankshaft N rotates at a speed of  2400 RPM.

At the beginning of the compression , temperature T_1 = 60 F = 519.67 R    

and;

Otto cycle with a pressure =  14.5 lbf/in² = (14.5 × 144 ) lb/ft²

= 2088 lb/ft²

The maximum temperature in the cycle is 5200 R

From the given information; the change in volume is:

V_1-V_2 = \dfrac{\pi}{4}D^2L

V_1-0.16V_1= \dfrac{\pi}{4}(3.7)^2(3.4)

V_1-0.16V_1= 36.55714291

0.84 V_1 =36.55714291

V_1 =\dfrac{36.55714291}{0.84 }

V_1 =43.52040823 \ in^3 \\ \\  V_1 = 43.52 \ in^3

V_1 = 0.02518 \ ft^3

the mass in air ( lb) can be determined by using the formula:

m = \dfrac{P_1V_1}{RT}

where;

R = 53.3533 ft.lbf/lb.R°

m = \dfrac{2088 \ lb/ft^2 \times 0.02518 \ ft^3}{53.3533 \ ft .lbf/lb.^0R  \times 519 .67 ^0 R}

m = 0.0018962 lb

From the tables  of ideal gas properties at Temperature 519.67 R

v_{r1} =158.58

u_1 = 88.62 Btu/lb

At state of volume 2; the relative volume can be determined as:

v_{r2} = v_{r1}  \times \dfrac{V_2}{V_1}

v_{r2} = 158.58 \times 0.16

v_{r2} = 25.3728

The specific energy u_2 at v_{r2} = 25.3728 is 184.7 Btu/lb

From the tables of ideal gas properties at maximum Temperature T = 5200 R

v_{r3} = 0.1828

u_3 = 1098 \ Btu/lb

To determine the relative volume at state 4; we have:

v_{r4} = v_{r3} \times \dfrac{V_1}{V_2}

v_{r4} =0.1828 \times \dfrac{1}{0.16}

v_{r4} =1.1425

The specific energy u_4 at v_{r4} =1.1425 is 591.84 Btu/lb

Now; the net work per cycle can now be calculated as by using the following formula:

W_{net} = Heat  \ supplied - Heat  \ rejected

W_{net} = m(u_3-u_2)-m(u_4 - u_1)

W_{net} = m(u_3-u_2- u_4 + u_1)

W_{net} = m(1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (410.08)

\mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, in horsepower. can be calculated as follows;

In the  four-cylinder, four-stroke internal combustion engine; the power developed by the engine can be calculated by using the expression:

W = 4 \times N'  \times W_{net

where ;

N' = \dfrac{2400}{2}

N' = 1200 cycles/min

N' = 1200 cycles/60 seconds

N' = 20 cycles/sec

W = 4 × 20 cycles/sec ×  0.777593696

W = 62.20749568 Btu/s

W = 88.0144746 hp

8 0
3 years ago
For a project in C++ we are supposed toDesign a class named Month. The class should have the following private members:-name: a
mart [117]

Answer:

include <iostream>

using namespace std;

 

class Month

{

public:

 Month (char firstLetter, char secondLetter, char thirdLetter);

 

 Month (int monthNum);

.

 

 Month();

 void outputMonth_num();

 

 

 void outputMonthLetters();

private:

 int month;

};

 

 

int main ()

{

 //

 // Variable declarations

 //

 int monthNum;

 char firstLetter, secondLetter, thirdLetter;    

 char testAgain;              

 

 do {

 

   cout << endl;

   cout << "Testing the default constructor ..." << endl;

   Month defaultMonth;

   defaultMonth.outputMonth_num();

   defaultMonth.outputMonthLetters();

 

   //

   // Construct a month using the constructor with one integer argument

   //

   cout << endl;

   cout << "Testing the constructor with one integer argument..." << endl;

   cout << "Enter a month number: ";

   cin >> monthNum;

 

   Month testMonth1(monthNum);

   testMonth1.outputMonth_num();

   testMonth1.outputMonthLetters();

 

   //

   // Construct a month using the constructor with three letters as arguments

   //

   cout << endl;

   cout << "Testing the constructor with 3 letters as arguments ..." << endl;

   cout << "Enter the first three letters of a month (lowercase): ";

   cin >> firstLetter >> secondLetter >> thirdLetter;

   cout << endl;

 

   Month testMonth2(firstLetter, secondLetter, thirdLetter);

   testMonth2.outputMonth_num();

   testMonth2.outputMonthLetters();

 

   //

   // See if user wants to try another month

   //

   cout << endl;

   cout << "Do you want to test again? (y or n) ";

   cin >> testAgain;

 }

 while (testAgain == 'y' || testAgain == 'Y');

 

 return 0;

}

 

 

Month::Month(char firstLetter, char secondLetter, char thirdLetter)

{

if ((firstLetter == 'j')&&(secondLetter == 'a')&&(thirdLetter == 'n'))

  outputMonth_num = 1;

if ((firstLetter == 'f')&&(secondLetter == 'e')&&(thirdLetter == 'b'))

  outputMonth_num = 2;

if ((firstLetter == 'm')&&(secondLetter == 'a')&&(thirdLetter == 'r'))

  outputMonth_num = 3;

if ((firstLetter = 'a')&&(secondLetter == 'p')&&(thirdLetter == 'r'))

  outputMonth_num = 4;

if ((firstLetter == 'm')&&(secondLetter == 'a')&&(thirdLetter == 'y'))

  outputMonth_num = 5;

if ((firstLetter == 'j')&&(secondLetter == 'u')&&(thirdLetter == 'n'))

  outputMonth_num = 6;

if ((firstLetter == 'j')&&(secondLetter == 'u')&&(.thirdLetter == 'l'))

  outputMonth_num = 7;

if ((firstLetter == 'a')&&(secondLetter == 'u')&&(thirdLetter == 'g'))

  outputMonth_num = 8;

if ((firstLetter == 's')&&(secondLetter == 'e')&&(thirdLetter == 'p'))

  outputMonth_num = 9;

if ((firstLetter == 'o')&&(secondLetter == 'c')&&(thirdLetter == 't'))

  outputMonth_num = 10;

if ((firstLetter == 'n')&&(secondLetter == 'o')&&(thirdLetter == 'v'))

 outputMonth_num = 11;

if ((firstLetter == 'd')&&(secondLetter == 'e')&&(thirdLetter == 'c'))

 outputMonth_num = 12;

}

 

Month::inputMonthByNumber

{

if (Month_num > 12 && Month_num < 1)

cout << "Invalid number for Month, please choose 1-12)\n";

}

 

void Month::outputMonth_num()

{

 if (month >= 1 && month <= 12)

   cout ><< "Month: " << month << endl;

 else

   cout << "Error - The month is not a valid!" << endl;

}

 

void Month::outputMonthLetters()

{

 switch (month)

   {

   case 1:

     cout << "Jan" << endl;

     break;

   case 2:

     cout << "Feb" << endl;

     break;

   case 3:

     cout << "Mar" << endl;

     break;

   case 4:

     cout << "Apr" << endl;

     break;

   case 5:

     cout << "May" << endl;

     break;

   case 6:

     cout << "Jun" << endl;

     break;

   case 7:

     cout << "Jul" << endl;

     break;

   case 8:

     cout << "Aug" << endl;

     break;

   case 9:  

     cout << "Sep" << endl;

     break;

   case 10:

     cout << "Oct" << endl;

     break;

   case 11:

     cout << "Nov" << endl;

     break;

   case 12:

     cout << "Dec" << endl;

     break;

   default:

     cout << "Error - the month is not a valid!" << endl;

   }

}

7 0
3 years ago
A gas expands in a piston-cylinder assembly from p1 = 8 bar, V1 = 0.02 m3 to p2 = 2 bar. The relation between pressure and volum
Charra [1.4K]

Answer:

The heat transfer is 29.75 kJ

Explanation:

The process is a polytropic expansion process

General polytropic expansion process is given by PV^n = constant

Comparing PV^n = constant with PV^1.2 = constant

n = 1.2

(V2/V1)^n = P1/P2

(V2/0.02)^1.2 = 8/2

V2/0.02 = 4^(1/1.2)

V2 = 0.02 × 3.2 = 0.064 m^3

W = (P2V2 - P1V1)/1-n

P1 = 8 bar = 8×100 = 800 kPa

P2 = 2 bar = 2×100 = 200 kPa

V1 = 0.02 m^3

V2 = 0.064 m^3

1 - n = 1 - 1.2 = -0.2

W = (200×0.064 - 800×0.02)/-0.2 = -3.2/-0.2 = 16 kJ

∆U = 55 kJ/kg × 0.25 kg = 13.75 kJ

Heat transfer (Q) = ∆U + W = 13.75 + 16 = 29.75 kJ

7 0
3 years ago
Section BreakProblem 08.048 2.value: 5.00 pointsRequired information Problem 08.048.b Compute the expected error. The expected e
Lady_Fox [76]

Answer:

a) 19 or select the closest answer

b) 5%

Explanation:

a)

from the voltage divide rule

V_{in} = V_0 * \frac{R_2}{R_2 + R_f}

\frac{V_0}{V_{in}} = \frac{R_2 + R_f}{R_2} => 1 + \frac{R_f}{R_2} = 20

\frac{R_f}{R_2} = 19

Select the nearest answer

b)

obtained gain = \frac{V_0}{V_{in}} = 1 + \frac{36}{2} = 19

Expected gain = \frac{V_0}{V_{in}} = 20

∴ error = |\frac{19 - 20}{20}| × 100

            = 1/20 × 100            

            = 5%

6 0
3 years ago
Other questions:
  • Make a proposal to add a small pizza shop to a historical part of town. How could it be designed to “fit” into the area?
    7·2 answers
  • An existing building is suffering from cracks in the exterior walls. The investigating engineer wants to ensure that the foundat
    11·1 answer
  • The fluid-conditioning components of hydraulic-powered equipment provide fluid that is clean and maintained at an acceptable ope
    6·1 answer
  • Automobile engines normally have
    8·1 answer
  • Air, at a free-stream temperature of 27.0°C and a pressure of 1.00 atm, flows over the top surface of a flat plate in parallel f
    13·1 answer
  • What was the most important thing you learned this school year in your engineering class and why did you choose this thing
    15·1 answer
  • Which 1 of the following did women NOT do during WWII?
    6·2 answers
  • Which - type of service shop is least likely to provide service to all
    9·1 answer
  • Explain how to properly engage the safety latches on the Stan Design Pit Jack.
    10·1 answer
  • A jet of water 75m in diameter,issues with a velocity of 30m/s and impinge on a stationary plate which distort its forward motio
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!