Sinx+sin3x=0
sin5x=-cos2x
1 answer:
Answer:
We have, sinx+sin3x+sin5x=0
∴(sinx+sin5x)+sin3x=0
∴2sin(
2
x+5x
)cos(
2
5x−x
)+sin3x=0
∴2sin3xcos2x+sin3x=0
∴sin3x(2cos2x+1)=0
Either sin3x=0 or 2cos2x+1=0
i.e. sin3x=0 or cos2x=−
2
1
Now, cos2x=−cos
3
π
∴cos2x=cos(π−
3
π
)
∴cos2x=cos
3
2π
∴sin3x=0 or cos2x=cos
3
2π
3x=nπ,n∈Z or 2x=2mπ±
3
2π
where m∈Z
Hence, x=
3
nπ
or x=mπ±
3
π
, where n,m∈Z.
You might be interested in
Answer:
No solution
Step-by-step explanation:
Absolute value can not output a negative result
Answer: y=4x-9
explanation: move the -4x over to the other side and it becomes positive 4x and -9 stays the same.
if 15 x 1.8 = 27 then
45 x 1.8 = 81
so answer: B) 81
Answer:
The area would be 80