1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
laila [671]
3 years ago
5

Given the definitions of f (x) and g(x) below, find the value of (g • f)(9).

Mathematics
1 answer:
Stells [14]3 years ago
8 0

9514 1404 393

Answer:

  (g·f)(9) = 496

Step-by-step explanation:

One way to do this is to find the values of g(9) and f(9).

  g(9) = (3x -1)x +14 = (3(9) -1)(9) +14 = 26(9) +14 = 248

  f(9) = -(9) +11 = 2

Then ...

  (g·f)(9) = g(9)·f(9) = 248·2

  (g·f)(9) = 496

You might be interested in
Please explain i will mark brainliesttt!
Sati [7]

Answer:

<em>Answer is </em><em>given below with explanations</em><em>. </em>

Step-by-step explanation:

given \: the \: line \: n \: passes \: through \\  \: ( - 3, - 7.5) \:  \: and(2, - 5) \\ the \: equation \: of \: the \: line \: is \\  \frac{y - y1}{y2 - y1}  =  \frac{x - x1}{x2 - x1}  \\ here \: x1 =  - 3 \:  \:  \: y1 =  - 7.5 \\ and \:  \: x2 = 2 \:  \:  \: y2 =  - 5 \\  \frac{y - ( - 7.5)}{ - 5 - ( - 7.5)}  =  \frac{x - ( - 3)}{2 - ( - 3)}  \\  \frac{y + 7.5}{ - 5 + 7.5}  =  \frac{x + 3}{2 + 3}  \\  \frac{y + 7.5}{2.5}  =  \frac{x + 3}{5}  \\ dividing \: by \: 5 \: on \: both \: side s\\  \frac{y + 7.5}{0.5}  =  \frac{x + 3}{1}  \\ 0.5(x + 3) = y + 7.5 \\ 0.5x + 1.5 = y + 7.5 \\ 0.5x - y - 6 = 0 \\ is \: the \: required \: equation.

<em>HAVE A NICE DAY</em><em>!</em>

<em>THANKS FOR GIVING ME THE OPPORTUNITY</em><em> </em><em>TO ANSWER YOUR QUESTION</em><em>. </em>

5 0
3 years ago
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
Kennedy has a gross income of $95,000. What is her total tax due?
ki77a [65]
Total tax due Answer: $27,000.
3 0
2 years ago
Show that 7x + 1 is equivalence to 2(2x - 1) + 3(x + 1)​
marissa [1.9K]
7x + 1 = 2(2x - 1) + 3(x + 1)

7x + 1 = 4x - 2 + 3x + 3

7x + 1 = 7x + 1

Please mark brainliest if right!
4 0
2 years ago
Read 2 more answers
The U.S. Department of Housing and Urban Development​ (HUD) uses the median to report the average price of a home in the United
MatroZZZ [7]

Answer:

Step-by-step explanation:

given that the U.S. Department of Housing and Urban Development​ (HUD) uses the median to report the average price of a home in the United States.

We know that mean, median and mode are measures of central tendency.

Mean is the average of all the prices while median is the middle entry when arranged in ascending order.

Mean has the disadvantage of showing undue figure if extreme entries are there. i.e. outlier affect mean.

Suppose a price goes extremely high, then mean will fluctuate more than median.

So median using gives a reliable estimate since median gives the middle price and equally spread to other sides.

3 0
3 years ago
Other questions:
  • Use algebra to simplify the expression before evaluating the limit. In particular, factor the highest power of n from the numera
    6·1 answer
  • 15(y - 4) - 2 (y - 2 )= - 5 (y+ 6)<br><br> pls solve fast<br> step by step
    9·2 answers
  • Write 2350 million in standard form.<br> Write 25 x 10^6 in standard form.
    6·1 answer
  • Two sides of a right triangle are 572 units long. What is the<br> perimeter of the triangle?
    15·1 answer
  • PLEASE HELP ME I WILL GIVE BRAINLIEST.
    12·1 answer
  • CAN SOME ONE PLEASEEEEEEE HELP ME!!!!!!!!!!!!!
    10·1 answer
  • Write an equation of the line shown.
    13·2 answers
  • Where , the distance between the points ( a, c) and ( b, c) is ( ) units
    5·1 answer
  • The length of a football field is 120 yards. How long is the football field in feet?
    13·2 answers
  • Sam hiked 4.5 km along a straight bush track, and then turned 40° and walked a further 3.8 km in a straight line.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!