Answer:
solve the inequality /2x-1/≥3
You need to work backwards
if it is no more than 9 units away from 8
thus x must be 8-9<x<8+9 solving -1<x<17
so the answer is 4.
B is the answer because diameter goes all the way through a circle
Answer:
92
Step-by-step explanation:
Answer:
![P(X = 0) = 0.0263](https://tex.z-dn.net/?f=P%28X%20%3D%200%29%20%3D%200.0263)
![P(X = 1) = 0.1407](https://tex.z-dn.net/?f=P%28X%20%3D%201%29%20%3D%200.1407)
![P(X = 2) = 0.3012](https://tex.z-dn.net/?f=P%28X%20%3D%202%29%20%3D%200.3012)
![P(X = 3) = 0.3224](https://tex.z-dn.net/?f=P%28X%20%3D%203%29%20%3D%200.3224)
![P(X = 4) = 0.1725](https://tex.z-dn.net/?f=P%28X%20%3D%204%29%20%3D%200.1725)
![P(X = 5) = 0.0369](https://tex.z-dn.net/?f=P%28X%20%3D%205%29%20%3D%200.0369)
Step-by-step explanation:
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
![P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20C_%7Bn%2Cx%7D.p%5E%7Bx%7D.%281-p%29%5E%7Bn-x%7D)
In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.
![C_{n,x} = \frac{n!}{x!(n-x)!}](https://tex.z-dn.net/?f=C_%7Bn%2Cx%7D%20%3D%20%5Cfrac%7Bn%21%7D%7Bx%21%28n-x%29%21%7D)
And p is the probability of X happening.
In this problem we have that:
![n = 5, p = 0.517](https://tex.z-dn.net/?f=n%20%3D%205%2C%20p%20%3D%200.517)
Distribution
![P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}](https://tex.z-dn.net/?f=P%28X%20%3D%20x%29%20%3D%20C_%7Bn%2Cx%7D.p%5E%7Bx%7D.%281-p%29%5E%7Bn-x%7D)
![P(X = 0) = C_{5,0}.(0.517)^{0}.(0.483)^{5} = 0.0263](https://tex.z-dn.net/?f=P%28X%20%3D%200%29%20%3D%20C_%7B5%2C0%7D.%280.517%29%5E%7B0%7D.%280.483%29%5E%7B5%7D%20%3D%200.0263)
![P(X = 1) = C_{5,1}.(0.517)^{1}.(0.483)^{4} = 0.1407](https://tex.z-dn.net/?f=P%28X%20%3D%201%29%20%3D%20C_%7B5%2C1%7D.%280.517%29%5E%7B1%7D.%280.483%29%5E%7B4%7D%20%3D%200.1407)
![P(X = 2) = C_{5,2}.(0.517)^{2}.(0.483)^{3} = 0.3012](https://tex.z-dn.net/?f=P%28X%20%3D%202%29%20%3D%20C_%7B5%2C2%7D.%280.517%29%5E%7B2%7D.%280.483%29%5E%7B3%7D%20%3D%200.3012)
![P(X = 3) = C_{5,3}.(0.517)^{3}.(0.483)^{2} = 0.3224](https://tex.z-dn.net/?f=P%28X%20%3D%203%29%20%3D%20C_%7B5%2C3%7D.%280.517%29%5E%7B3%7D.%280.483%29%5E%7B2%7D%20%3D%200.3224)
![P(X = 4) = C_{5,4}.(0.517)^{4}.(0.483)^{1} = 0.1725](https://tex.z-dn.net/?f=P%28X%20%3D%204%29%20%3D%20C_%7B5%2C4%7D.%280.517%29%5E%7B4%7D.%280.483%29%5E%7B1%7D%20%3D%200.1725)
![P(X = 5) = C_{5,5}.(0.517)^{5}.(0.483)^{0} = 0.0369](https://tex.z-dn.net/?f=P%28X%20%3D%205%29%20%3D%20C_%7B5%2C5%7D.%280.517%29%5E%7B5%7D.%280.483%29%5E%7B0%7D%20%3D%200.0369)